Perseverance has Collected its First Sample of Mars and Prepared it for Return to Earth… Eventually

It’s another first for NASA.

In early September, the Perseverance rover successfully used its robotic arm and drill to drill into a rock and extract a sample. It extracted a rock core about 6 cm (2 in) long and placed it inside a sealed tube. This is the first time a robotic spacecraft has collected a sample from another planet destined for a return to Earth on a separate spacecraft.

Now we wait for the eventual return of the sample to Earth.

Continue reading “Perseverance has Collected its First Sample of Mars and Prepared it for Return to Earth… Eventually”

Perseverance has Already Detected Over 300 Dust Devils and Vortices on Mars

Dust devils are generally used as a trope in media when the writers want to know that an area is deserted. They signify the desolation and isolation that those places represent. Almost none of the settings of those stories are close to the isolation of Perseverance, the Mars rover that landed on the planet earlier this year.  Fittingly, the number of dust devils Perseverance has detected is also extremely high – over 300 in its first three months on the planet. 

Continue reading “Perseverance has Already Detected Over 300 Dust Devils and Vortices on Mars”

After Its Last Rock Sample Crumbled Into Powder, Perseverance is Going to try Again

In the last two decades, we have all grown accustomed to rovers exploring Mars. At least one rover has been active on the planet every day since January 4, 2004, when NASA’s Spirit rover landed in Gusev crater. Opportunity (2004) and Curiosity (2012) followed, each making unique journeys of discovery of their own. Perseverance (2021) is the latest and greatest of these robotic explorers, boasting a state-of-the-art in-situ resource utilization experiment to extract oxygen from the atmosphere, an accompanying helicopter to scout the path ahead, and a suite of unparalleled geology instruments. But what really sets Perseverance’s mission apart is that, for the first time, it is collecting samples of Martian rock to bring back to Earth.

Continue reading “After Its Last Rock Sample Crumbled Into Powder, Perseverance is Going to try Again”

Perseverance Fails to Collect its First Sample

Over the past few weeks, there was quite a bit of excitement in the air at the NASA Jet Propulsion Laboratory in Pasadena, California, where mission controllers were prepping the Perseverance rover to acquire its first sample from the Martian surface. This mission milestone would be the culmination of years of hard work by a team of over 90 dedicated scientists and engineers.

The commands to commence operations to take its first sample (from drill site Roubion) were sent to the rover on Sol 164 (Thurs, Aug. 5th). On the morning of Friday, Aug. 6th, the team gathered to witness the sampling data come in. Everything appeared to be fine until they were notified a few hours later that the sample tube was empty! Since then, the rover’s science and engineering teams have been investigating what could have become of the sample.

Continue reading “Perseverance Fails to Collect its First Sample”

Ingenuity is now Mapping the Terrain Around Perseverance

Having eyes in the sky is useful for a variety of activities.  Everything from farming to military operations has benefited from the boom in drone usage, as the small aircraft track the progress of crop disease, enemy movements, or how awesome a professor skier looks going down a mountain.  Now the benefits of aerial surveillance has spread to other worlds as Perseverance is starting to map out its path with help from Ingenuity.

Continue reading “Ingenuity is now Mapping the Terrain Around Perseverance”

How’s the Weather in Jezero Crater? According to Perseverance: Cold

On February 18th, 2021, the Perseverance rover landed in the Jezero crater on Mars. Shortly thereafter, it powered up some of the scientific instruments it will use to conduct science operations and search for potential evidence of past life. One such instrument is the Mars Environmental Dynamics Analyzer (MEDA), which turned on for 30 minutes and issued the rover’s first weather report from Mars.

The forecast? Bitter Cold! Basically, the temperature was lower than what you’d expect on a harsh and windy winter’s night here on Earth! According to the data the rover sent back, which was received by mission controllers at 05:25 P.M. EST (08:25 P.M. PST), the local temperature around the Octavia E. Bulter landing in the Jezero crater was -20 °C (- 4 °F) when MEDA started recording, then dropped to -25.6 °C (-14 °F) within 30 minutes.

Continue reading “How’s the Weather in Jezero Crater? According to Perseverance: Cold”

Rocks and Other Features at Perseverance’s Landing Site are Getting Navajo Names

On Feb. 18th, 2021, after spending six months in transit, the Perseverance rover landed in the Jezero Crater on Mars. By March 4th, it began driving short distances and calibrating its instruments in preparation for all the science operations it will conduct. Most recently, Perseverance began studying its first scientific target, a rock that has been named “Máaz” – the Navajo word for “Mars.”

Continue reading “Rocks and Other Features at Perseverance’s Landing Site are Getting Navajo Names”

Perseverance has Started Driving on Mars

On February 18th, 2021, NASA’s Perseverance rover landed in the Jezero Crater on Mars. Over the next two years of its primary mission, this robotic mission will carry on in the search for past life on Mars, obtaining soil and rock drill samples that will be returned to Earth someday for analysis. And as of March 4th, the rover conducted its first drive, covering 6.5 meters (21.3 feet) across the Martian landscape.

Continue reading “Perseverance has Started Driving on Mars”

Microbes Found That Survive on the by-Products of Radioactive Decay

In addition to investigating the big questions about life in our Universe (origins, evolution, distribution, etc.), one of the chief aims of astrobiologists is to characterize extraterrestrial environments to determine if life could exist there. However, there are still unresolved questions about the range of conditions under which life can survive and thrive. Placing better constraints on this will help astrobiologists search for life beyond Earth.

To get a better understanding of how ecosystems can exist beneath the ocean floor (so far from the Sun) a team of researchers led by the University of Rhode Island’s Graduate School of Oceanography (GSO) conducted a study on microbes in ancient seafloor sediment. What they found, to their surprise, was that these lifeforms are sustained primarily by chemicals created by the natural irradiation of water molecules.

Continue reading “Microbes Found That Survive on the by-Products of Radioactive Decay”