Webb Sees Asteroids Collide in Another Star System

Asteroid collision: CREDIT:NASA/LYNETTE COOK

The James Webb Space Telescope (JWST) continues to make amazing discoveries. This time in the constellation of Pictor where, in the Beta Pictoris system a massive collision of asteroids. The system is young and only just beginning its evolutionary journey with planets only now starting to form. Just recently, observations from JWST have shown significant energy changes emitted by dust grains in the system compared to observations made 20 years ago. Dust production was thought to be ongoing but the results showed the data captured 20 years ago may have been a one-off event that has since faded suggesting perhaps, an asteroid strike!

Continue reading “Webb Sees Asteroids Collide in Another Star System”

Research Work Begins on the Habitable Worlds Observatory

This artist’s concept features one of multiple initial possible design options for NASA’s Habitable Worlds Observatory. Credits: NASA’s Goddard Space Flight Center Conceptual Image Lab

NASA are planning on building a telescope to hunt for habitable worlds. The imaginatively named ‘Habitable Worlds Observatory’ is at least a decade away but NASA have started to develop the underlying technology needed. The contracts have been awarded to three companies to research the next-generation optics, mission designs and telescope features at a cost of $17.5 million. Work should begin late summer 2024.

Continue reading “Research Work Begins on the Habitable Worlds Observatory”

What Impact Does Ozone Have on an Exoplanet?

Artist's illustration of Proxima Centauri b. ESO/M. Kornmesser

As we discover more and more exoplanets – and the current total is in excess of 5,200 – we continue to try to learn more about them. Astrobiologists busy themselves analysing their atmospheres searching for anything that provides a sign of life. It is quite conceivable of course that the Universe is teeming with life based on very different chemistry to ours but we often look to life on Earth to know what to look for. On Earth for example, ozone forms through photolysis of molecular oxygen and is an indicator of life. Using the James Webb Space Telescope astronomers are searching stars in the habitable zone of their star for the presence of ozone and how it impacts their climate.

Continue reading “What Impact Does Ozone Have on an Exoplanet?”

Galaxies in the Early Universe Preferred their Food Cold

This illustration shows a galaxy forming only a few hundred million years after the big bang, when gas was a mix of transparent and opaque during the Era of Reionization. Data from NASA’s James Webb Space Telescope shows that cold gas is falling onto these galaxies. Credit: NASA/ESA/CSA/Joseph Olmsted (STScI)

One of the main objectives of the James Webb Space Telescope (JWST) is to study the early Universe by using its powerful infrared optics to spot the first galaxies while they were still forming. Using Webb data, a team led by the Cosmic Dawn Center in Denmark pinpointed three galaxies that appear to have been actively forming just 400 to 600 million years after the Big Bang. This places them within the Era of Reionization, when the Universe was permeated by opaque clouds of neutral hydrogen that were slowly heated and ionized by the first stars and galaxies.

This process caused the Universe to become transparent roughly 1 billion years after the Big Bang and (therefore) visible to astronomers today. When the team consulted the data obtained by Webb, they observed that these galaxies were surrounded by an unusual amount of dense gas composed almost entirely of hydrogen and helium, which likely became fuel for further galactic growth. These findings already reveal valuable information about the formation of early galaxies and show how Webb is exceeding its mission objectives.

Continue reading “Galaxies in the Early Universe Preferred their Food Cold”

Galaxies Evolved Surprisingly Quickly in the Early Universe

Galactic Bar

Anyone familiar with astronomy will know that galaxies come in a fairly limited range of shapes, typically; spiral, elliptical, barred-spiral and irregular. The barred-spiral galaxy has been known to be a feature of the modern universe but a study from astronomers using the Hubble Space Telescope has recently challenged that view. Following on observations using the James Webb Space Telescope has found the bar feature in some spiral galaxies as early as 11 billion years ago suggesting galaxies evolved faster in the early Universe than previously expected. 

Continue reading “Galaxies Evolved Surprisingly Quickly in the Early Universe”

Will We Know if TRAPPIST-1e has Life?

Artist's impression of the Archean Eon. Credit: Tim Bertelink/Wikimedia

The search for extrasolar planets is currently undergoing a seismic shift. With the deployment of the Kepler Space Telescope and the Transiting Exoplanet Survey Satellite (TESS), scientists discovered thousands of exoplanets, most of which were detected and confirmed using indirect methods. But in more recent years, and with the launch of the James Webb Space Telescope (JWST), the field has been transitioning toward one of characterization. In this process, scientists rely on emission spectra from exoplanet atmospheres to search for the chemical signatures we associate with life (biosignatures).

However, there’s some controversy regarding the kinds of signatures scientists should look for. Essentially, astrobiology uses life on Earth as a template when searching for indications of extraterrestrial life, much like how exoplanet hunters use Earth as a standard for measuring “habitability.” But as many scientists have pointed out, life on Earth and its natural environment have evolved considerably over time. In a recent paper, an international team demonstrated how astrobiologists could look for life on TRAPPIST-1e based on what existed on Earth billions of years ago.

Continue reading “Will We Know if TRAPPIST-1e has Life?”

You Can't Know the True Size of an Exoplanet Without Knowing its Star's Magnetic Field

Artist's impression of a "hot Jupiter" orbiting close to a Sun-like star. Credit: NASA

In 2011, astronomers with the Wide Angle Search for Planets (WASP) consortium detected a gas giant orbiting very close to a Sun-like (G-type) star about 700 light-years away. This planet is known as WASP-39b (aka. “Bocaprins”), one of many “hot Jupiters” discovered in recent decades that orbits its star at a distance of less than 5% the distance between the Earth and the Sun (0.05 AU). In 2022, shortly after the James Webb Space Telescope (JWST) it became the first exoplanet to have carbon dioxide and sulfur dioxide detected in its atmosphere.

Alas, researchers have not constrained all of WASP-39b’s crucial details (particularly its size) based on the planet’s light curves, as observed by Webb. which is holding up more precise data analyses. In a new study led by the Max Planck Institute for Solar System Research (MPS), an international team has shown a way to overcome this obstacle. They argue that considering a parent star’s magnetic field, the true size of an exoplanet in orbit can be determined. These findings are likely to significantly impact the rapidly expanding field of exoplanet study and characterization.

Continue reading “You Can't Know the True Size of an Exoplanet Without Knowing its Star's Magnetic Field”

Webb Sees a Galaxy Awash in Star Formation

Starburst galaxy M82 was observed by the Hubble Space Telescope in 2006, which showed the galaxy’s edge-on spiral disk, shredded clouds, and hot hydrogen gas. The James Webb Space Telescope has observed M82’s core, capturing in unprecedented detail the structure of the galactic wind and characterizing individual stars and star clusters. Credit: NASA/ESA/CSA/STScI/Alberto Bolatto (UMD)

Since it began operations in July 2022, the James Webb Space Telescope (JWST) has fulfilled many scientific objectives. In addition to probing the depths of the Universe in search of galaxies that formed shortly after the Big Bang, it has also provided the clearest and most detailed images of nearby galaxies. In the process, Webb has provided new insight into the processes through which galaxies form and evolve over billions of years. This includes galaxies like Messier 82 (M82), a “starburst galaxy” located about 12 million light-years away in the constellation Ursa Major.

Also known as the “Cigar Galaxy” because of its distinctive shape, M82 is a rather compact galaxy with a very high star formation rate. Roughly five times that of the Milky Way, this is why the core region of M82 is over 100 times as bright as the Milky Way’s. Combined with the gas and dust that naturally obscures visible light, this makes examining M82’s core region difficult. Using the extreme sensitivity of Webb‘s Near-Infrared Camera (NIRCam), a team led by the University of Maryland observed the central region of this starburst galaxy to examine the physical conditions that give rise to new stars.

Continue reading “Webb Sees a Galaxy Awash in Star Formation”

Webb Finds Hints of a Third Planet at PDS 70

An artist's illustration of the PDS 70 system, not to scale. The two planets are clearing a gap in the circumstellar disk as they form. As they accrete in-falling material, the heat makes them glow. Image Credit: W. M. Keck Observatory/Adam Makarenko

The exoplanet census now stands at 5,599 confirmed discoveries in 4,163 star systems, with another 10,157 candidates awaiting confirmation. So far, the vast majority of these have been detected using indirect methods, including Transit Photometry (74.4%) and Radial Velocity measurements (19.4%). Only nineteen (or 1.2%) were detected via Direct Imaging, a method where light emitted or reflected from an exoplanet’s atmosphere or surface is used to detect and characterize it. Thanks to the latest generation of high-contrast and high-angular resolution instruments, this is starting to change.

This includes the James Webb Space Telescope and its sophisticated mirrors and advanced infrared imaging suite. Using data obtained by Webb‘s Near-Infrared Camera (NIRCam), astronomers within the MIRI mid-INfrared Disk Survey (MINDS) survey recently studied a very young variable star (PDS 70) about 370 light-years away with two confirmed protoplanets. After examining the system and its extended protoplanetary disk, they found evidence of a third possible protoplanet orbiting the star. These observations could help advance our understanding of planetary systems that are still in the process of formation.

Continue reading “Webb Finds Hints of a Third Planet at PDS 70”

Little Red Dots in Webb Photos Turned Out to Be Quasars

A n EIGER JWST image of the luminous quasar J1148+5251, an extremely rare active SMBH of 10 billion solar masses (blue box). Two “baby quasars” (red boxes) are seen in the same dataset. © NASA, ESA, CSA, J. Matthee (ISTA), R. Mackenzie (ETH Zurich), D. Kashino (National Observatory of Japan), S. Lilly (ETH Zurich)

In its first year of operation, the James Webb Space Telescope (JWST) made some profound discoveries. These included providing the sharpest views of iconic cosmic structures (like the Pillars of Creation), transmission spectra from exoplanet atmospheres, and breathtaking views of Jupiter, its largest moons, Saturn’s rings, its largest moon Titan, and Enceladus’ plumes. But Webb also made an unexpected find during its first year of observation that may prove to be a breakthrough: a series of little red dots in a tiny region of the night sky.

These little red dots were observed as part of Webb’s Emission-line galaxies and Intergalactic Gas in the Epoch of Reionization (EIGER) and the First Reionization Epoch Spectroscopically Complete Observations (FRESCO) surveys. According to a new analysis by an international team of astrophysicists, these dots are galactic nuclei containing the precursors of Supermassive Black Holes (SMBHs) that existed during the early Universe. The existence of these black holes shortly after the Big Bang could change our understanding of how the first SMBHs in our Universe formed.

Continue reading “Little Red Dots in Webb Photos Turned Out to Be Quasars”