Gaze Into the Heart of the Milky Way in This Latest JWST Image

James Webb Space Telescope’s NIRCam (Near-Infrared Camera) instrument reveals a 50 light-years-wide portion of the Milky Way’s dense center. An estimated 500,000 stars shine in this image of the Sagittarius C (Sgr C) region, along with some as-yet unidentified features. Credit: NASA, ESA, CSA, STScI, S. Crowe (UVA).

Thanks to its infrared capabilities, the James Webb Space Telescope (JWST) allows astronomers to peer through the gas and dust clogging the Milky Way’s center, revealing never-before-seen features. One of the biggest mysteries is the star forming region called Sagittarius C, located about 300 light-years from the Milky Way’s supermassive black hole. An estimated 500,000 stars are forming in this region that’s being blasted by radiation from the densely packed stars. How can they form in such an intense environment?

Right now, astronomers can’t explain it.

Continue reading “Gaze Into the Heart of the Milky Way in This Latest JWST Image”

An Epic Collaboration Between Hubble and JWST

This panchromatic view of galaxy cluster MACS0416 was created by combining infrared observations from the NASA/ESA/CSA James Webb Space Telescope with visible-light data from the NASA/ESA Hubble Space Telescope. Credit: NASA/ESA/CSA/STScI

In 2012, as part of the MAssive Cluster Survey (MACS), the Hubble Space Telescope (HST) discovered a pair of colliding galaxy clusters (MACS0416) that will eventually combine to form an even bigger cluster. Located about 4.3 billion light-years from Earth, the MACS0416 cluster contains multiple gravitational lenses that allow astronomers to look back in time and view galaxies as they appeared when the Universe was young. In a new collaboration that symbolizes the passing of the torch, the venerable Hubble and the James Webb Space Telescope (JWST) teamed up to conduct an extremely detailed study of MACS0416.

Continue reading “An Epic Collaboration Between Hubble and JWST”

Supermassive Black Holes Shut Down Star Formation During Cosmic Noon

Artist’s impression of a quasar. These all have supermassive black holes at their hearts. Credit: NOIRLab/NSF/AURA/J. da Silva
Artist’s impression of a quasar. These all have supermassive black holes at their hearts. Credit: NOIRLab/NSF/AURA/J. da Silva

Since it became operational almost two years ago, the James Webb Space Telescope (JWST) has produced countless breathtaking images of the Universe and enabled fresh insights into how it evolved. In particular, the telescope’s instruments are optimized for studying the cosmological epoch known as Cosmic Dawn, ca. 50 million to one billion years after the Big Bang when the first stars, black holes, and galaxies in the Universe formed. However, astronomers are also getting a better look at the epoch that followed, Cosmic Noon, which lasted from 2 to 3 billion years after the Big Bang.

During this time, the first galaxies grew considerably, most stars in the Universe formed, and many galaxies with supermassive black holes (SMBHs) at their centers became incredibly luminous quasars. Scientists have been eager to get a better look at galaxies dated to this period so they can see how SMBHs affected star formation in young galaxies. Using near-infrared data obtained by Webb, an international team of astronomers made detailed observations of over 100 galaxies as they appeared 2 to 4 billion years after the Big Bang, coinciding with Cosmic Noon.

Continue reading “Supermassive Black Holes Shut Down Star Formation During Cosmic Noon”

JWST Confirms the Formation of Heavy Elements in a Kilonova

Image from JWST’s Near-Infrared Camera (NIRCam) instrument displaying GRB 230307A’s kilonova and its former home galaxy, the former of which was found to possess heavy elements. (Credit: NASA, ESA, CSA, STScI, A. Levan (IMAPP, Warw), A. Pagan (STScI))

A recent study published in Nature investigates recent observations from NASA’s James Webb Space Telescope (JWST) and ground-based telescopes of heavy elements within the ejected material of a recent gamma-ray burst (GRB), classified as GRB 230307A, that was likely produced by a kilonova with GRB 230307A being designated as the second-brightest GRB ever detected. The heavy element in question is the chemical element tellurium, which is classified as a metalloid on the periodic table. However, scientists also hypothesize that the element iodine, which is a requirement for most of life on the Earth and classified as a reactive nonmetal, could also exist within the kilonova’s explosion, with both elements residing side-by-side on the periodic table.

Continue reading “JWST Confirms the Formation of Heavy Elements in a Kilonova”

A New Weather Feature was Hiding in JWST’s Picture of Jupiter

Image of Jupiter taken by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) in July 2022 displays striking features of the largest planet in the solar system in infrared light, with brightness indicating high altitudes. One of these features is a jet stream within the large bright band just above Jupiter’s equator, which was the focus of this study. (Credit: NASA, ESA, CSA, STScI, R. Hueso (University of the Basque Country), I. de Pater (University of California, Berkeley), T. Fouchet (Observatory of Paris), L. Fletcher (University of Leicester), M. Wong (University of California, Berkeley), J. DePasquale (STScI))

In July 2022, NASA’s James Webb Space Telescope (JWST) used its NIRCam (Near-Infrared Camera) to capture stunning infrared images of the largest planet in the solar system, Jupiter. Within these striking images, scientists recently discovered a jet stream in the northern latitudes just over Jupiter’s equator and 20-35 kilometers (12-21 miles) above Jupiter’s cloud tops. This jet stream stretches approximately 4,800 kilometers (3,000 miles) with speeds of 515 kilometers per hour (320 miles per hour), more than double the speed of a Category 5 hurricane on Earth.

Continue reading “A New Weather Feature was Hiding in JWST’s Picture of Jupiter”

The Combination of Oxygen and Methane Could Reveal the Presence of Life on Another World

This artist’s impression shows a Super-Earth orbiting a Sun-like star. HD 85512 in the southern constellation of Vela (The Sail). This planet is one of sixteen super-Earths discovered by the HARPS instrument on the 3.6-metre telescope at ESO’s La Silla Observatory. This planet is about 3.6 times as massive as the Earth lis at the edge of the habitable zone around the star, where liquid water, and perhaps even life, could potentially exist. Credit: ESO

In searching for life in the Universe, a field known as astrobiology, scientists rely on Earth as a template for biological and evolutionary processes. This includes searching for Earth analogs, rocky planets that orbit within their parent star’s habitable zone (HZ) and have atmospheres composed of nitrogen, oxygen, and carbon dioxide. However, Earth’s atmosphere has evolved considerably over time from a toxic plume of nitrogen, carbon dioxide, and traces of volcanic gas. Over time, the emergence of photosynthetic organisms caused a transition, leading to the atmosphere we see today.

The last 500 million years, known as the Phanerozoic Eon, have been particularly significant for the evolution of Earth’s atmosphere and terrestrial species. This period saw a significant rise in oxygen content and the emergence of animals, dinosaurs, and embryophyta (land plants). Unfortunately, the resulting transmission spectra are missing in our search for signs of life in exoplanet atmospheres. To address this gap, a team of Cornell researchers created a simulation of the atmosphere during the Phanerozoic Eon, which could have significant implications in the search for life on extrasolar planets.

Continue reading “The Combination of Oxygen and Methane Could Reveal the Presence of Life on Another World”

An Exoplanet so Hot it has Clouds Made of Quartz

Artist illustration showing what WASP-17 b could look like based on data obtained from a myriad of ground- and space-based telescopes, including NASA’s Hubble, Webb, and the retired Spitzer space telescopes. This most recent study used MIRI (Webb’s Mid-Infrared Instrument) to identify nanocrystals of quartz within the clouds WASP-17 b. (Credit: NASA, ESA, CSA, and R. Crawford (STScI))

A recent study published in The Astrophysical Journal Letters used data obtained by the James Webb Space Telescope’s (JWST) Mid-Infrared Instrument (MIRI) to identify the presence of quartz nanocrystals in the upper atmosphere of WASP-17 b, an exoplanet whose mass and radius are approximately 0.78 and 1.87 that of Jupiter, respectively, and is located approximately 1,324 light-years from Earth. WASP-17 b is classified as a “puffy” hot Jupiter due to its 3.7-day orbital period, meaning the extreme temperatures could cause unique chemical processes to occur within its atmosphere, but the astronomers were still surprised by the findings.

Continue reading “An Exoplanet so Hot it has Clouds Made of Quartz”

JWST Observes the Kuiper Belt: Sedna, Gonggong, and Quaoar

Artist's conception of Sedna, the TNO that orbits in the outer edges of the Solar System. Credit: NASA/JPL-Caltech

The Kuiper Belt, the vast region at the edge of our Solar System populated by countless icy objects, is a treasure trove of scientific discoveries. The detection and characterization of Kuiper Belt Objects (KBOs), sometimes referred to as Trans-Neptunian Objects (TNOs), has led to a new understanding of the history of the Solar System. The disposition of KBOs is an indicator of gravitational currents that have shaped the Solar System and reveal a dynamic history of planetary migrations. Since the late 20th century, scientists have been eager to get a closer look at KBOs to learn more about their orbits and composition.

Studying bodies in the outer Solar System is one of the many objectives of the James Webb Space Telescope (JWST). Using data obtained by Webb’s Near-Infrared Spectrometer (NIRSpec), an international team of astronomers observed three dwarf planets in the Kuiper Belt: Sedna, Gonggong, and Quaoar. These observations revealed several interesting things about their respective orbits and composition, including light hydrocarbons and complex organic molecules believed to be the product of methane irradiation.

Continue reading “JWST Observes the Kuiper Belt: Sedna, Gonggong, and Quaoar”

TRAPPIST-1 Has Flares. What Does This Mean for its Planets?

Most exoplanets orbit red dwarf stars because they're the most plentiful stars. This is an artist's illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech
Most exoplanets orbit red dwarf stars because they're the most plentiful stars. This is an artist's illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech

The TRAPPIST-1 system continues to fascinate astronomers, astrobiologists, and exoplanet hunters alike. In 2017, NASA announced that this red dwarf star (located 39 light-years away) was orbited by no less than seven rocky planets – three of which were within the star’s habitable zone (HZ). Since then, scientists have attempted to learn more about this system of planets to determine whether they could support life. Of particular concern is the way TRAPPIST-1 – like all M-type (red dwarf) stars – is prone to flare-ups, which could have a detrimental effect on planetary atmospheres.

Using the James Webb Space Telescope (JWST), an international team of astrophysicists led by the University of Colorado Boulder (CU Boulder) took a closer look at this volatile star. As they describe in their paper (which recently appeared online), the Webb data was used to perform a detailed spectroscopic investigation of four solar flares bursting around TRAPPIST-1. Their findings could help scientists characterize planetary environments around red dwarf stars and measure how flare activity can affect planetary habitability.

Continue reading “TRAPPIST-1 Has Flares. What Does This Mean for its Planets?”

Hubble Sees a Mysterious Flash in Between Galaxies

Artist’s concept of one of brightest explosions ever seen in space: a Luminous Fast Blue Optical Transient (LFBOT). Credit: NASA

While the night sky may appear tranquil (and incredibly beautiful), the cosmos is filled with constant stellar explosions and collisions. Among the rarest of these transient events are what is known as Luminous Fast Blue Optical (LFBOTs), which shine intensely bright in blue light and fade after a few days. These transient events are only detectable by telescopes that continually monitor the sky. Using the venerable Hubble Space Telescope, an international team of astronomers recently observed an LFBOT far between two galaxies, the last place they expected to see one.

Continue reading “Hubble Sees a Mysterious Flash in Between Galaxies”