Juno Careening to Earth for Critical Flyby Boost and Cool Movie Making on Oct. 9 – Watch SLOOH Live

Trajectory Map of Juno’s Earth Flyby on Oct. 9, 2013. The Earth gravity assist is required to accelerate Juno’s arrival at Jupiter on July 4, 2016 and will captured unprecedented movie of Earth/Moon system. Credit: NASA/JPL

Trajectory Map of Juno’s Earth Flyby on Oct. 9, 2013
The Earth gravity assist is required to accelerate Juno’s arrival at Jupiter on July 4, 2016 and will capture an unprecedented movie of the Earth/Moon system. Credit: NASA/JPL
Details on how to watch via Slooh – see below [/caption]

NASA’s solar powered Jupiter-bound Juno orbiter is careening towards Earth for an absolutely critical gravity assisted fly by speed boost while capturing an unprecedented movie view of the Earth/Moon system – on its ultimate quest to unveiling Jupiter’s genesis!

“Juno will flyby Earth on October 9 to get a gravity boost and increase its speed in orbit around the Sun so that it can reach Jupiter on July 4, 2016,” Juno chief scientist Dr. Scott Bolton told Universe Today in an exclusive new Juno mission update – as the clock is ticking to zero hour. “The closest approach is over South Africa.”

All this ‘high frontier’ action comes amidst the utterly chaotic US government partial shutdown, that threatened the launch of the MAVEN Mars orbiter, has halted activity on many other NASA projects and stopped public announcements of the safe arrival of NASA’s LADEE lunar orbiter on Oct. 6, Juno’s flyby and virtually everything else related to NASA!

Bolton confirmed that the shutdown fortunately hasn’t altered or killed Juno’s flyby objectives. And ops teams at prime contractor Lockheed Martin have rehearsed and all set.

And some more good news is that Slooh will track the Juno Earth Flyby “LIVE” – for those hoping to follow along. Complete details below!

“The shutdown hasn’t affected our operations or plans, Bolton told me. Bolton is Juno’s principal investigator from the Southwest Research Institute (SwRI), San Antonio, Texas.

“Juno is 100% healthy.”

“But NASA is unable to participate in our public affairs and press activities,” Bolton elaborated.

NASA’s Juno Jupiter-bound space probe will fly by Earth for essential speed boost on Oct 9, 2013. Credit: NASA/JPL
NASA’s Juno Jupiter-bound space probe will fly by Earth for essential speed boost on Oct 9, 2013. Credit: NASA/JPL

97% of NASA’s employees are furloughed – including public affairs – due to the legal requirements of the shutdown!

Credit: NASA/JPL
Credit: NASA/JPL
Juno will also capture an unprecedented new movie of the Earth/Moon system.

A full up science investigation of our Home Planet by Juno is planned, that will also serve as a key test of the spacecraft and its bevy of state of the art instruments.

“During the earth flyby we have most of our instruments on and will obtain a unique movie of the Earth Moon system on our approach.

“We will also calibrate instuments and measure earth’s magnetosphere, obtain closeup images of the Earth and the Moon in UV [ultraviolet] and IR [infrared],” Bolton explained to Universe Today.

The flyby will accelerate the spacecraft’s velocity by 16,330 mph.

Where is the best view of Juno’s flyby, I asked?

“The closest approach is over South Africa and is about 500 kilometers [350 miles],” Bolton replied.

The time of closest approach is 3:21 p.m. EDT (12:21 PDT / 19:21 UTC) on Oct. 9, 2013

Watch this mission produced video about Juno and the Earth flyby:

Video caption: On Oct. 9, 2013, NASA’s Jupiter-bound Juno spacecraft is making a quick pass to get a gravity boost from the mother planet. Dr. Scott Bolton of Southwest Research Institute® is the Juno mission principal investigator, leading an international science team seeking to answer some fundamental questions about the gas giant and, in turn, about the processes that led to formation of our solar system.

NASA’s Juno spacecraft blasted off atop an Atlas V rocket two years ago from Cape Canaveral Air Force Station, FL, on Aug. 5, 2011 to begin a 2.8 billion kilometer science trek to discover the genesis of Jupiter hidden deep inside the planet’s interior.

Juno is on a 5 year and 1.7 Billion mile (2.8 Billion km) trek to the largest planet in our solar system. When it arrives at Jupiter on July 4, 2016, Juno will become the first polar orbiting spacecraft at the gas giant.

Juno’s flight track above Earth during Oct. 9, 2013 flyby. Credit: NASA/JPL
Juno’s flight track above Earth during Oct. 9, 2013 flyby. Credit: NASA/JPL

During a one year science mission – entailing 33 orbits lasting 11 days each – the probe will plunge to within about 3000 miles of the turbulent cloud tops and collect unprecedented new data that will unveil the hidden inner secrets of Jupiter’s genesis and evolution.

The goal is to find out more about the planets origins, interior structure and atmosphere, observe the aurora, map the intense magnetic field and investigate the existence of a solid planetary core

Why does Juno need a speed boost from Earth?

“A direct mission to Jupiter would have required about 50 percent more fuel than we loaded,” said Tim Gasparrini, Juno program manager for Lockheed Martin Space Systems, in a statement.

“Had we not chosen to do the flyby, the mission would have required a bigger launch vehicle, a larger spacecraft and would have been more expensive.”

Juno soars skyward to Jupiter on Aug. 5, 2011 from launch pad 41 at Cape Canaveral Air Force Station at 12:25 p.m. EDT. View from the VAB roof. Credit: Ken Kremer/kenkremer.com
Juno soars skyward to Jupiter on Aug. 5, 2011 from launch pad 41 at Cape Canaveral Air Force Station at 12:25 p.m. EDT. View from the VAB roof. Credit: Ken Kremer/kenkremer.com

Viewers near Cape Town, South Africa will have the best opportunity to view the spacecraft traveling across the sky.

Juno itself will most likely not be visible to the unaided eye, but binoculars or a small telescope with a wide field should provide an opportunity to view, according to a Slooh statement.

Slooh will track Juno live on October 9th, 2013.

Check here for international starting times: http://goo.gl/7ducFs – and for the Slooh broadcast hosted by Paul Cox.

Viewers can view the event live on Slooh.com using their computer or mobile device, or by downloading the free Slooh iPad app in the iTunes store. Questions can be asked during the broadcast via Twitter by using the hashtag #nasajuno -says Slooh.

Amidst the government shutdown, Juno prime contractor Lockheed Martin is working diligently to ensure the mission success.

Because there are NO 2nd chances!

“The team is 100 percent focused on executing the Earth flyby successfully,” said Gasparrini.

“We’ve spent a lot of time looking at possible off-nominal conditions. In the presence of a fault, the spacecraft will stay healthy and will perform as planned.”

Stay tuned here for continuing Juno, LADEE, MAVEN and more up-to-date NASA news.

And be sure to check back here for my post-flyby update.

What’s not at all clear is whether Juno will detect any signs of ‘intelligent life’ in Washington D.C.!

Ken Kremer

…………….

Learn more about Juno, LADEE, MAVEN, Curiosity, Mars rovers, Cygnus, Antares, SpaceX, Orion, the Gov’t shutdown and more at Ken’s upcoming presentations

Oct 8: “NASA’s Historic LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”& “Curiosity, MAVEN, Juno and Orion updates”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

Awesome Photo: Aurora, Airglow, City Lights and Shining Stars

Photo taken by ESA astronaut Luca Parmitano on Sept. 5, 2013 (ESA/NASA)

Italian astronaut Luca Parmitano shares a lot of fantastic photos taken from his privileged position 260 miles up aboard the Space Station, orbiting the planet 16 times a day. This is his latest, a stunning view of nighttime city lights spread out beneath a glowing dome of ghostly airglow and shimmering aurorae, with a backdrop of brightly shining stars. The dark silhouette of a solar array is in the foreground at right.

And in case you were wondering, yes, astronauts certainly can see stars while in space. A lot of them, in fact. (Except up there, they don’t twinkle… but they’re no less beautiful!)

“Every time we look into the sky and we admire the same stars, we share the same experience with all those who still know how to dream.”

– Luca Parmitano

Luca Parmitano is the first of ESA’s new generation of astronauts to fly into space. The current mission, Volare, is ESA’s fifth long-duration Space Station mission. During his six-month-long stay aboard the ISS, Luca has been conducting research for ESA and international partners as well as taken many photographs of our planet, sharing them on Twitter, Flickr, and the Volare mission blog.

See this and more photos taken by Luca on the Volare Flickr page here.

Image credit: ESA/NASA

How Long Will Life Survive on Earth?

A powerful X-class solar flare erupting on the sun on July 6, 2012 photographed by the Solar Dynamics Observers. Credit: NASA

Life has existed on Earth for billions of years, appearing shortly after the planet had cooled and liquid water became available.

From the first bacteria to the amazingly complex animals we see today, life has colonized every corner of our planet.

As you know, our Sun has a limited lifespan.

Over the next 5 billion years, it will burn the last of its hydrogen, bloat up as a red giant and consume Mercury and Venus.

This would be totally disastrous for local flora and fauna, but all life on the surface of the Earth will already be long gone.

In fact, we have less than a billion years to enjoy the surface of our planet before it becomes inhospitable.

Because our Sun… is heating up.

You can’t feel it over the course of a human lifetime, but over hundreds of millions of years, the amount of radiation pouring out of the Sun will grow.

This will heat the surface of our planet to the point that the oceans boil.

At the core of the Sun, the high temperatures and pressures convert hydrogen into helium. For every tonne of material the Sun converts, it shrinks a bit making the Sun denser, and a little hotter.

Over the course of the next billion years or so, the amount of energy the Earth receives from the Sun will increase by about 10%. Which doesn’t sound like much, but it means a greenhouse effect of epic proportions.

A TerraSAR-X stripmap image from 23 April 2009. The larger icebergs are bright, while smaller icebergs are capsized and appear as dark blocks. The inset shows two superimposed Envisat ASAR images from 24 and 27 April. The region outlined in red indicates the area of the TerraSAR-X image.   Credits: DLR, ESA (Annotations by A. Humbert, Münster University
A TerraSAR-X stripmap image of icebergs.
Whatever is left of the ice caps will melt, and the water itself will boil away, leaving the planet dry and parched. Water vapor is a powerful greenhouse gas, this will drive the temperatures even hotter.

Plate tectonics will shut down, and all the carbon will be stripped from the atmosphere.

It’ll be bad.

As temperatures rise, complex lifeforms will find life on Earth less hospitable. It will seem as if evolution is running in reverse, as plants and animals die off, leaving the invertebrates and eventually just microbial life.

This rise in temperature will be the end of life on the surface of Earth as we know it.

Still, there are reserves of water deep underground which will continue to protect microbial life for billions of years.

Perhaps they’ll experience that final baking when the Sun does reach the end of its life.

Even a few hundred million years is an incomprehensible amount of time compared to the age of our civilization.

If humanity does survive well into the future, is there anything we could do about this problem?

As the Sun heats up, making Earth inhospitable, it heats up the rest of the Solar System too. Frozen worlds in the Solar System will melt, becoming more habitable.

Encaladus, a moon of Saturn, as shown in this Voyager 1 image. Credit: NASA
Encaladus, a moon of Saturn, as shown in this Voyager 1 image. Credit: NASA
It’s possible that future civilizations could relocate to the asteroid belt, or the moons of Saturn. We could try something even more radical: move the Earth.

By carefully steering asteroids so they barely miss us, an advanced civilization could distort the Earth’s orbit, relocating our planet further from the Sun.

As the Sun heats up, our planet would be continuously repositioned so the surface temperature stays roughly the same. Of course, this would be tricky business. Make the wrong move, and you’re facing the frigid cold of the outer Solar System.

So there’s no need to panic. Life here has a few hundred million years left; a billion, tops. But if we want to continue on for billions of years, we’ll want to add solar heating to our growing list of big problems.

Electro-L’s Fully Lit View of Planet Earth at the Autumnal Equinox

The entire disk of the Earth lit during the equinox on September 22, 2013. Credit: Roscosmos / NTSOMZ / SRC "Planeta" / zelenyikot.livejournal.com

Here’s a fantastic view of our home planet taken by the Russian weather satellite Electro-L. And while Elektro-L can take gigantic photographs of the entire planet every 30 minutes, it only can get a fully-lit view like this just twice a year — at the spring and autumn equinoxes. This image was taken during the autumnal equinox on September 22, 2013.

Below is an animated gif of the view, going from day to night.

Animation of the Electro-L satellite's view of Earth on September 22, 2013. Credit: Roscosmos / NTSOMZ / SRC "Planeta" / zelenyikot.livejournal.com
Animation of the Electro-L satellite’s view of Earth on September 22, 2013. Credit: Roscosmos / NTSOMZ / SRC “Planeta” / zelenyikot.livejournal.com

Elektro-L orbits Earth in a geostationary orbit 36,000 kilometers above the equator, and with the Sun exactly behind the satellite on the equinox — the day the north and south poles get the same amount of light — the entire disk is fully lit.

You can see the typhoon Usagi raging over Southeast Asia, clouds and rain over Russia and swirling clouds in the ocean near Antarctica.

Electro-L was launched in 2011 and is Russia’s first geostationary weather satellite. It’s a data hog – sending back 2.56 to 16.36 megabits per second, with resolution of 1 kilometer per pixel. You can see the big 5000 x 5000 pixel version at the Electro-L website.

Thanks to Vitaliy Egorov for sharing this image with UT. He has posted the images at his zelenyikot/livejournal website.

Why Are There Seasons?

Why Are There Seasons?

We’re in the middle of Summer here on Vancouver Island, the Sun is out, the air is warm, and the river is great for swimming.

Three months from now, it’s going to be raining and miserable.

Six months from now, it’s still going to be raining, and maybe even snowing.

No matter where you live on Earth, you experience seasons, as we pass from Spring to Summer to Fall to Winter, and then back to Spring again.

Why do we have variations in temperature at all? What causes the seasons?

If you ask people this question, they’ll often answer that it’s because the Earth is closer to the Sun in the summer, and further in the winter.

But this isn’t why we have seasons. In fact, during Winter in the Northern Hemisphere, the Earth is actually at the closest point to the Sun in its orbit, and then farthest during the Summer. It’s the opposite situation for the Southern hemisphere, and explains why their seasons are more severe.

So if it’s not the distance from the Sun, why do we experience seasons?

We have seasons because the Earth’s axis is tilted.

Consider any globe you’ve ever used, and you’ll see that instead of being straight up and down, the Earth is at a tilt of 23.5-degrees.

The Earth’s North Pole is actually pointed towards Polaris, the North Star, and the south pole towards the constellation of Octans. At any point during its orbit, the Earth is always pointed the same direction.

For six months of the year, the Northern hemisphere is tilted towards the Sun, while the Southern hemisphere is tilted away. For the next six months, the situation is reversed.

Whichever hemisphere is tilted towards the Sun experiences more energy, and warms up, while the hemisphere tilted away receives less energy and cools down.

Consider the amount of solar radiation falling on part of the Earth.

When the Sun is directly overhead, each square meter of Earth receives about 1000 watts of energy.

But when the Sun is at a severe angle, like from the Arctic circle, that same 1000 watts of energy is spread out over a much larger area.

This tilt also explains why the days are longer in the Summer, and then shorter in the Winter.

The longest day of Summer, when the Northern Hemisphere is tilted towards the Sun is known as the Summer Solstice.

And then when it’s tilted away from the Sun, that’s the Winter Solstice.

When both hemispheres receive equal amounts of energy, it’s called the Equinox. We have a Spring Equinox, and then an Autumn Equinox, when our days and night are equal in length.

So how does distance from the Sun affect us?

The distance between the Earth and has an effect on the intensity of the seasons.

The Southern Hemisphere’s Summer happens when the Earth is closest to the Sun, and their winter when the Earth is furthest. This makes their seasons even more severe.

You might be interested to know that the orientation of the Earth axis is actually changing.

full-526px-earth_precessionsvgOver the course of a 26,000 year cycle, the Earth’s axis traces out a great circle in the sky. This is known as the precession of the equinoxes.

At the halfway point, 13,000 years, the seasons are reversed for the two hemispheres, and then they return to original starting point 13,000 years later.

You might not notice it, but the time of the Summer Solstice comes earlier by about 20 minutes every year; a full day every 70 years or so.

I hope this helps you understand why the Earth – and any planet with a tilted axis – experiences seasons.

“Oddball” Asteroid is Really a Comet

Spitzer image of an asteroid's surprise coma and tail (NASA/JPL-Caltech/DLR/NAU)

It’s a case of mistaken identity: a near-Earth asteroid with a peculiar orbit turns out not to be an asteroid at all, but a comet… and not some Sun-dried burnt-out briquette either but an actual active comet containing rock and dust as well as CO2 and water ice. The discovery not only realizes the true nature of one particular NEO but could also shed new light on the origins of water here on Earth.

JPL Near-Earth Object database map of 3552 Don Quixote's orbit
JPL Near-Earth Object database map of 3552 Don Quixote’s orbit

Designated 3552 Don Quixote, the 19-km-wide object is the third largest near-Earth object — mostly rocky asteroids that orbit the Sun in the vicinity of Earth.

According to the IAU, an asteroid is coined a near-Earth object (NEO) when its trajectory brings it within 1.3 AU from the Sun and within 0.3 AU of Earth’s orbit.

About 5 percent of near-Earth asteroids are thought to actually be dead comets. Today an international team including Joshua Emery, assistant professor of earth and planetary sciences at the University of Tennessee, have announced that Don Quixote is neither.

an asteroid is coined a Near Earth Asteroid (NEA) when its trajectory brings it within 1.3 AU from the Sun and  hence within 0.3 AU of the Earth's orbit.
An asteroid is coined a near-Earth object (NEO) when its trajectory brings it within 1.3 AU from the Sun and within 0.3 AU of Earth’s orbit. (IAU)

“Don Quixote has always been recognized as an oddball,” said Emery. “Its orbit brings it close to Earth, but also takes it way out past Jupiter. Such a vast orbit is similar to a comet’s, not an asteroid’s, which tend to be more circular — so people thought it was one that had shed all its ice deposits.”

Read more: 3552 Don Quixote… Leaving Our Solar System?

Using the NASA/JPL Spitzer Space Telescope, the team — led by Michael Mommert of Northern Arizona University — reexamined images of Don Quixote from 2009 when it was at perihelion and found it had a coma and a faint tail.

Emery also reexamined images from 2004, when Quixote was at its farthest distance from the Sun, and determined that the surface is composed of silicate dust, which is similar to comet dust. He also determined that Don Quixote did not have a coma or tail at this distance, which is common for comets because they need the sun’s radiation to form the coma and the sun’s charged particles to form the tail.

The researchers also confirmed Don Quixote’s size and the low, comet-like reflectivity of its surface.

“The power of the Spitzer telescope allowed us to spot the coma and tail, which was not possible using optical telescopes on the ground,” said Emery. “We now think this body contains a lot of ice, including carbon dioxide and/or carbon monoxide ice, rather than just being rocky.”

This discovery implies that carbon dioxide and water ice might be present within other near-Earth asteroids and may also have implications for the origins of water on Earth, as comets are thought to be the source of at least some of it.

The amount of water on Don Quixote is estimated to be about 100 billion tons — roughly the same amount in Lake Tahoe.

“Our observations clearly show the presence of a coma and a tail which we identify as molecular line emission from CO2 and thermal emission from dust. Our discovery indicates that more NEOs may harbor volatiles than previously expected.”

– Mommert et al., “Cometary Activity in Near–Earth Asteroid (3552) Don Quixote “

The findings were presented Sept. 10 at the European Planetary Science Congress 2013 in London.

Source: University of Tennessee press release

__________________

3552 Quixote isn’t the only asteroid found to exhibit comet-like behavior either — check out Elizabeth Howell’s recent article, “Asteroid vs. Comet: What the Heck is 3200 Phaethon?” for a look at another NEA with cometary aspirations.

An Illustrative Explanation Of Our Solar System

The Solar System: Our Home in Space (screenshot) © Philipp Dettmer Information Design

The Solar System: it’s our home in space, the neighborhood that we all grew up in and where — unless we figure out a way to get somewhere else — all of our kids and grandkids and great-great-great-great-times-infinity-great-grandkids will grow up too. That is, of course, until the Sun swells up and roasts Earth and all the other inner planets to a dry crunchy crisp before going into a multi-billion year retirement as a white dwarf.

But until then it’s a pretty nice place to call home, if I may say so myself.

Edu-film designer Philipp Dettmer and his team have put together a wonderful little animation explaining the basic structure of the Solar System using bright, colorful graphics and simple shapes to illustrate the key points of our cosmic neighborhood. It won’t teach you everything you’ll ever need to know about the planets and it’s not advisable to use it as a navigation guide, but it is fun to watch and well-constructed, with nice animation by Stephan Rether and narration by Steve Taylor.

Check out the full video below:

“Through information design, concepts can be made easy and accessible when presented in a short, understandable edu-film or perhaps an infographic. Whether explaining the vastness of the universe or the tiniest building blocks of life – all information can be presented in a way that everyone understands. Regardless of prior knowledge.”
– Philipp Dettmer

(And come on, admit it… you learned something new from this!)

Credit: Philipp Dettmer Information Design. HT to Colin Lecher at Salon.

Earthlings Wave at Saturn as Cassini Images Us

Earth Waves at Cassini on July 19, 2013- From more than 40 countries and 30 U.S. states, people around the world shared more than 1,400 images of themselves as part of the Wave at Saturn event organized by NASA's Cassini mission on July 19, 2013. The Cassini team created this image collage as a tribute to the people of Earth Credit: NASA/JPL-Caltech/People of Earth See link below to the absolutely gigantic full resolution version

Earth Waves at Saturn and Cassini on July 19, 2013
From more than 40 countries and 30 U.S. states, people around the world shared more than 1,400 images of themselves as part of the Wave at Saturn event organized by NASA’s Cassini mission on July 19, 2013. The Cassini team created this image collage as a tribute to the people of Earth
Credit: NASA/JPL-Caltech/People of Earth
See link below to the absolutely gigantic full resolution version [/caption]

On July 19, millions of Earthlings worldwide participated in NASA’s ‘Wave at Saturn’ campaign as the NASA Cassini Saturn orbiter turned about and imaged all of us.

Earthlings from 40 countries and 30 U.S. states heeded NASA’s call to photograph themselves while smiling and waving at Saturn and Cassini across 1 billion miles of interplanetary space and shared over 1400 images.

The results of all those images has now been assembled into a fabulous collage in the shape of our planet and released today (Aug. 21) by NASA and the Cassini team as a tribute to the People of Earth.

“Did you wave at Saturn and send us your photo? Then here’s looking at you!” NASA announced on the Cassini Facebook page.

This event was the first time that the citizens of Earth knew in advance that a distant interplanetary spacecraft was photographing portraits of our home planet and our Moon. NASA invited everyone to participate.

Photos flooded into NASA via Twitter, Facebook, Flickr, Instagram, Google+ and email.

Click here for the full resolution version. But be forewarned – it weighs in at over 26 MB and it’s far too big to post here.

The Day the Earth Smiled: Sneak Preview In this rare image taken on July 19, 2013, the wide-angle camera on NASA's Cassini spacecraft has captured Saturn's rings and our planet Earth and its moon in the same frame. Image Credit: NASA/JPL-Caltech/Space Science Institute
The Day the Earth Smiled: Sneak Preview
In this rare image taken on July 19, 2013, the wide-angle camera on NASA’s Cassini spacecraft has captured Saturn’s rings and our planet Earth and its moon in the same frame. Image Credit: NASA/JPL-Caltech/Space Science Institute

“Thanks to all of you, near and far, old and young, who joined the Cassini mission in marking the first time inhabitants of Earth had advance notice that our picture was being taken from interplanetary distances,” said Linda Spilker, Cassini project scientist at NASA’s Jet Propulsion Laboratory, Pasadena, Calif, in a statement.

“While Earth is too small in the images Cassini obtained to distinguish any individual human beings, the mission has put together this collage so that we can celebrate all your waving hands, uplifted paws, smiling faces and artwork.”

The Cassini imaging science team is still assembling the hundreds of images of Saturn and Earth snapped by the spacecraft as we were waving, to create individual color composites and a panoramic view of the ‘pale blue dot’ and the entire Saturnian system.

To capture all of Saturn and its wide swath of rings, Cassini’s wide angle camera snapped a mosaic of 33 footprints on July 19, 2013.

“At each footprint, images were taken in different spectral filters for a total of 323 images,” says Carolyn Porco, Cassini Imaging Team leader, Space Science Institute in Boulder, Colo.

Cassini took the pictures of Earth from a distance of about 898 million miles (1.44 billion kilometers) away from the home to every human being that has ever lived.

Here is our partial version of Cassini’s mosaic.

Partial context mosaic of the Earth and Saturn taken by NASA’s Cassini orbiter on July 19, 2013.   This mosaic was assembled from five wide angle camera raw images.  Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Partial context mosaic of the Earth and Saturn taken by NASA’s Cassini orbiter on July 19, 2013. This mosaic was assembled from five Cassini wide angle camera raw images and offers a sneak peek of the complete panorama. Earth at lower right. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Cassini was launched from Florida in 1997.

It achieved orbit at Saturn in 2004 and has transmitted breathtaking images and science that revolutionized our understanding of the Saturnian system.

The mission is scheduled to continue until 2017 when it will commit a suicide death dive into the humongous gas giant.

Coincidentally, the first humans (Neil Armstrong and Buzz Aldrin) set foot on the Moon 44 years ago nearly to the day of Cassini’s Earth-Moon portrait on July 20, 1969 aboard Apollo 11.

And likewise on July 19, 2013, billionaire space enthusiast Jeff Bezos announced that his dive teams had recovered components of an Apollo 11 first stage F-1 rocket engine from the Saturn V moon rocket that propelled the first humans to the Moon.

Ken Kremer

JPL Waves at Saturn As NASA's Cassini spacecraft turned its imaging cameras to Earth, scientists, engineers and visitors at NASA's Jet Propulsion Laboratory, Pasadena, Calif., gathered to wave at our robotic photographer in the Saturn system on July 19, 2013. Credit: NASA/JPL-Caltech
JPL Waves at Saturn As NASA’s Cassini spacecraft turned its imaging cameras to Earth, scientists, engineers and visitors at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., gathered to wave at our robotic photographer in the Saturn system on July 19, 2013. Credit: NASA/JPL-Caltech

Earth’s Highest Clouds Shine at the “Top of the Orbit”

Polar mesospheric clouds shine over a midnight sunrise above Alaska on August 4, 2013 (NASA)

Looking for a new desktop background? This might do nicely: a photo of noctilucent “night-shining” clouds seen above a midnight Sun over Alaska, taken from the ISS as it passed over the Aleutian Islands just after midnight local time on Sunday, August 4.

When this photo was taken Space Station was at the “top of the orbit” — 51.6 ºN, the northernmost latitude that it reaches during its travels around the planet.

According to the NASA Earth Observatory site, “some astronauts say these wispy, iridescent clouds are the most beautiful phenomena they see from orbit.” So just what are they? Read on…

Found about 83 km (51 miles) up, noctilucent clouds (also called polar mesospheric clouds, or PMCs) are the highest cloud formations in Earth’s atmosphere. They form when there is just enough water vapor present to freeze into ice crystals. The icy clouds are illuminated by the Sun when it’s just below the horizon, after darkness has fallen or just before sunrise, giving them their eponymous property.

NLCs seen in the southern hemisphere in Jan. 2010 (NASA)
NLCs seen in the southern hemisphere in Jan. 2010 (NASA)

Noctilucent clouds have also been associated with rocket launches, space shuttle re-entries, and meteoroids, due to the added injection of water vapor and upper-atmospheric disturbances associated with each. Also, for some reason this year the clouds appeared a week early.

Read more: Noctilucent Clouds — Electric Blue Visitors from the Twilight Zone

Some data suggest that these clouds are becoming brighter and appearing at lower latitudes, perhaps as an effect of global warming putting more greenhouse gases like methane into the atmosphere.

“When methane makes its way into the upper atmosphere, it is oxidized by a complex series of reactions to form water vapor,” said James Russell, the principal investigator of NASA’s Aeronomy of Ice in the Mesosphere (AIM) project and a professor at Hampton University. “This extra water vapor is then available to grow ice crystals for NLCs.”

A comparison of noctilucent cloud formation from 2012 and 2013 has been compiled using data from the AIM spacecraft. You can see the sequence here.

And for an incredible motion sequence of noctilucent clouds — taken from down on the ground — check out the time-lapse video below by Maciej Winiarczyk, coincidentally made at around the same time as the ISS photo above:

(The video was featured as the Astronomy Picture of the Day (APOD) for August 19, 2013.)

Source: NASA Earth Observatory

Stunning Aerial Tour of the Arctic

Horseshoe-shaped lateral moraines at the margin of the Penny Ice Cap on Baffin Island, Nunavut, Canada. Lateral moraines are accumulations of debris along the sides of a glacier formed by material falling from the valley wall. Credit: NASA / Michael Studinger

Enjoy this tour of the Arctic and Greenland, courtesy of the pilots of IceBridge, a six-year NASA mission to survey the ice at both of Earth’s poles. These views come from NASA’s P-3B aircraft, and the video is a selection of some of the best footage from the forward and nadir cameras mounted to the aircraft taken during IceBridge’s spring deployment over Greenland and the Arctic Ocean.

This airborne mission is collecting radar, laser altimetry, and other data on the changing ice sheets, glaciers, and sea ice of the Arctic and Antarctic. It is the largest airborne survey of Earth’s polar ice ever flown, and it will provide an unprecedented three-dimensional view of Arctic and Antarctic ice sheets, ice shelves and sea ice. These flights will provide a yearly, multi-instrument look at the behavior of the rapidly changing features of the Greenland and Antarctic ice.

Data collected during IceBridge will help scientists bridge the gap in polar observations between NASA’s Ice, Cloud and Land Elevation Satellite (ICESat) — in orbit since 2003 — and ICESat-2, planned for late 2015. ICESat stopped collecting science data in 2009, making IceBridge critical for ensuring a continuous series of observations.

Find out more about the mission and see more images and videos at the Operation IceBridge website.