Greenland’s ice Loss is Worse Than We Thought

Cumulative melt days on the Greenland Ice Sheet for the 2022 melt season (left) and difference from the 1981 to 2010 average melt days for the same period (right). Credit: NSIDC/T. Mote, University of Georgia

Climate change is the single greatest threat facing our planet today. Thanks to excess carbon emissions that have been growing steadily since the mid-20th century, average temperatures continue to rise worldwide. This leads to feedback mechanisms, such as rising sea levels, extreme weather, drought, wildfires, and glacial melting. This includes the Arctic Ice Pack, the East Antarctic glacier, and the Greenland Ice Sheet (GrIS), which are rapidly melting and increasing global sea levels.

Worse than that, the disappearance of the world’s ice sheets means that Earth’s surface and oceans absorb more heat, driving global temperatures even further. According to a new NASA-supported study by an international team of Earth scientists and glaciologists, the Greenland Ice Sheet is melting at an accelerating rate, much faster than existing models predict. According to these findings, far more ice will be lost from Greenland during the 21st century, which means its contribution to sea-level rise will be significantly higher.

Continue reading “Greenland’s ice Loss is Worse Than We Thought”

The Rapid Changes We’re Seeing With the Earth’s Magnetic Field Don’t Mean the Poles are About to Flip. This is Normal

An illustration of Earth's magnetic field. Image Credit: ESA/ATG medialab

One of the most interesting discoveries about Earth in the past few decades concerns the Earth’s magnetic poles. Paleomagnetic records show that the poles have flipped places 183 times in the last 83 million years. That’s about every 450,000 years on average, though there were ten million years between flips in at least two cases.

The Earth’s magnetic field is experiencing some rapid changes right now, but scientists say that has no relation to pole flipping.

Continue reading “The Rapid Changes We’re Seeing With the Earth’s Magnetic Field Don’t Mean the Poles are About to Flip. This is Normal”

The IPCC Releases its 2022 Report on Climate Change, in Case you Needed Something Else to Worry About

Since 1988, the Intergovernmental Panel on Climate Change (IPCC) was formed and tasked with advancing knowledge of humanity’s impact on the natural environment. Beginning in 1990, they have issued multiple reports on the natural, political, and economic impacts Climate Change will have, as well as possible options for mitigation and adaptation. On Feb. 27th, the IPCC released the second part of its Sixth Assessment Report (AR6) – “Impacts, Adaptation, and Vulnerability” – and the outlook isn’t good!

Continue reading “The IPCC Releases its 2022 Report on Climate Change, in Case you Needed Something Else to Worry About”

NASA has 4 new Earth Science Missions Launching in 2022

Outer space is a great place to go if you want to study the Earth. Although outward-looking spacecraft like Hubble and the highly anticipated James Webb Space Telescope garner most of the attention from the public – understandably, given their spectacular imagery of distant astronomical phenomena – the large majority of satellite infrastructure in orbit is actually focused back on our home planet. The unparalleled view of the planet from space offers unique advantages to scientists hoping to measure changes and patterns here on Earth that just aren’t possible from the ground. In 2022, NASA will launch four new Earth science missions, each offering something unique, and adding a new way to understand, and protect, our home.

let’s take a look at the four missions, and what they hope to achieve in the coming years.

Continue reading “NASA has 4 new Earth Science Missions Launching in 2022”

Animals Could Have Been Around Hundreds of Millions of Years Earlier Than Previously Believed

Credit: Elizabeth Turner/Laurentian University

According to the most widely accepted theories, evolutionary biologists assert that life on Earth began roughly 4 billion years ago, beginning with single-celled bacteria and gradually giving way to more complex organisms. According to this same evolutionary timetable, the first complex organisms emerged during the Neoproterozoic era (ca. 800 million years ago), which took the form of fungi, algae, cyanobacteria, and sponges.

However, due to recent findings made in the Arctic Circle, it appears that sponges may have existed in Earth’s oceans hundreds of millions of years earlier than we thought! These findings were made by Prof. Elizabeth Turner of Laurentian University, who unearthed what could be the fossilized remains of sponges that are 890 million years old. If confirmed, these samples would predate the oldest fossilized sponges by around 350 million years.

Continue reading “Animals Could Have Been Around Hundreds of Millions of Years Earlier Than Previously Believed”

Clean Room Tour with NASA’s Next Gen Tracking Data Relay Satellite TDRS-M, Closeout Incident Under Review – Photos

Inside the Astrotech payload processing facility in Titusville, FL,NASA's massive, insect like Tracking and Data Relay Satellite, or TDRS-M, spacecraft is undergoing preflight processing during media visit on 13 July 2017. TDRS-M will transmit critical science data gathered by the ISS, Hubble and numerous NASA Earth science missions. It is being prepared for encapsulation inside its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station for launch on a United Launch Alliance (ULA) Atlas V rocket on 3 August 2017. Credit: Ken Kremer/kenkremer.com

Inside the Astrotech payload processing facility in Titusville, FL,NASA’s massive, insect like Tracking and Data Relay Satellite, or TDRS-M, spacecraft is undergoing preflight processing during media visit on 13 July 2017. TDRS-M will transmit critical science data gathered by the ISS, Hubble and numerous NASA Earth science missions. It is being prepared for encapsulation inside its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station for launch on a United Launch Alliance (ULA) Atlas V rocket on 3 August 2017. Credit: Ken Kremer/kenkremer.com

ASTROTECH SPACE OPERATIONS/KENNEDY SPACE CENTER, FL – The last of NASA’s next generation Tracking and Data Relay Satellites (TRDS) designed to relay critical science data and research observations gathered by the International Space Station (ISS), Hubble and dozens of Earth-orbiting Earth science missions is undergoing final prelaunch clean room preparations on the Florida Space Coast while targeting an early August launch – even as the agency reviews the scheduling impact of a weekend “closeout incident” that “damaged” a key component.

Liftoff of NASA’s $408 million eerily insectoid-looking TDRS-M science relay comsat atop a United Launch Alliance (ULA) Atlas V rocket currently scheduled for August 3 may be in doubt following a July 14 work related incident causing damage to the satellite’s Omni S-band antenna while inside the Astrotech Space Operations facility in Titusville, Florida.

“The satellite’s Omni S-band antenna was damaged during final spacecraft closeout activities,” NASA said in an updated status statement provided to Universe Today earlier today, July 16. NASA did not provide any further details when asked.

Everything had been perfectly on track as of Thursday, July 13 as Universe Today participated in an up close media tour and briefing about the massive probe inside the clean room processing facility at Astrotech Space Operations in Titusville, Fl.

On July 13, technicians were busily working to complete final spacecraft processing activities before its encapsulation inside the nose cone of the ULA Atlas V rocket she will ride to space, planned for the next day on July 14. The satellite and pair of payload fairings were stacked in separate high bays at Astrotech on July 13.

Alas the unspecified “damage” to the TDRS-M Omni S-band antenna unfortunately took place on July 14.

Up close clean room visit with NASA’s newest science data relay comsat – Tracking and Data Relay Satellite-M (TDRS-M) inside the Astrotech payload processing facility high bay in Titusville, FL. Two gigantic fold out antennae’s, plus space to ground antenna dish visible inside the ‘cicada like cocoon’ with solar arrays below. Omni S-band antenna at top. Launch on ULA Atlas V slated for August 2017 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

TDRS-M was built by Boeing and engineers are now analyzing the damage in a team effort with NASA. However it’s not known exactly during which closeout activity or by whom the damage occurred.

ULA CEO Tory Bruno tweeted that his company is not responsible and referred all questions to NASA. This may indicate that the antennae was not damaged during the encapsulation procedures inside the ULA payload fairing halves.

“NASA and Boeing are reviewing an incident that occurred with the Tracking and Data Relay Satellite (TDRS-M) on July 14 at Astrotech Space Operations in Titusville, Florida. The satellite’s Omni S-band antenna was damaged during final spacecraft closeout activities” stated NASA.

Up close look at the NASA TDRS-M satellite Omni S-band antenna damaged during clean room processing on July 14, 2017. Launch on ULA Atlas V is slated for Aug. 2017. Credit: Julian Leek

TDRS-M looks like a giant insect – or a fish depending on your point of view. It was folded into flight configuration for encapsulation in the clean room and the huge pair of single access antennas resembled a cocoon or a cicada. The 15 foot diameter single access antennas are large parabolic-style antennas and are mechanically steerable.

What does TDRS do? Why is it important? How does it operate?

“The existing Space Network of satellites like TDRS provide constant communications from other NASA satellites like the ISS or Earth observing satellites like Aura, Aqua, Landsat that have high bandwidth data that needs to be transmitted to the ground,” TDRS Deputy Project Manager Robert Buchanan explained to Universe Today during an interview in the Astrotech clean room.

“TRDS tracks those satellites using antennas that articulate. Those user satellites send the data to TDRS, like TDRS-M we see here and nine other TDRS satellites on orbit now tracking those satellites.”

“That data acquired is then transmitted to a ground station complex at White Sands, New Mexico. Then the data is sent to wherever those user satellites want the data to be sent is needed, such as a science data ops center or analysis center.”

Once launched and deployed in space they will “take about 30 to 40 days to fully unfurl,” Buchanan told me in the Astrotech clean room.

Astrotech is located just a few miles down the road from NASA’s Kennedy Space Center and the KSC Visitor Complex housing the finest exhibits of numerous spaceships, hardware items and space artifacts.

Preflight clean room processing inside the Astrotech payload processing facility preparing NASA’s Tracking and Data Relay Satellite, or TDRS-M, spacecraft for launch on ULA Atlas V in Aug. 2017. Credit: Julian Leek

At this time, the TDRS-M website countdown clock is still ticking down towards a ULA Atlas V blastoff on August 3 at 9:02 a.m. EDT (1302 GMT) from Space Launch Complex 41 (SLC-41) on Cape Canaveral Air Force Station, for a late breakfast delight.

The Aug. 3 launch window spans 40 minutes from 9:02 to 9:42 a.m. EDT.

Whether or not the launch date will change depends on the results of the review of the spacecraft’s health by NASA and Boeing. Several other satellites are also competing for launch slots in August.

“The mission team is currently assessing flight acceptance and schedule. TDRS-M is planned to launch Aug. 3, 2017, on an United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral Air Force Station in Florida,” NASA explained.

NASA’s Tracking and Data Relay Satellite, or TDRS-M, spacecraft will be encapsulated inside these two protective payload fairing halves inside the Astrotech payload processing facility high bay in Titusville, FL. Launch on ULA Atlas V slated for August 2017 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

TDRS-M, spacecraft, which stands for Tracking and Data Relay Satellite – M is NASA’s new and advanced science data relay communications satellite that will transmit research measurements and analysis gathered by the astronaut crews and instruments flying abroad the International Space Station (ISS), Hubble Space Telescope and over 35 NASA Earth science missions including MMS, GPM, Aura, Aqua, Landsat, Jason 2 and 3 and more.

The TDRS constellation orbits 22,300 miles above Earth and provide near-constant communication links between the ground and the orbiting satellites.

Preflight clean room processing inside the Astrotech payload processing facility preparing NASA’s Tracking and Data Relay Satellite, or TDRS-M, spacecraft for launch on ULA Atlas V in Aug. 2017. Credit: Julian Leek

TRDS-M will have S-, Ku- and Ka-band capabilities. Ka has the capability to transmit as much as six-gigabytes of data per minute. That’s the equivalent of downloading almost 14,000 songs per minute says NASA.

The TDRS program is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

TDRS-M is the third satellite in the third series of NASA’s American’s most powerful and most advanced Tracking and Data Relay Satellites. It is designed to last for a 15 year orbital lifetime.

The first TDRS satellite was deployed from the Space Shuttle Challenger in 1983 as TDRS-A.

TDRS-M was built by prime contractor Boeing in El Segundo, California and is the third of a three satellite series – comprising TDRS -K, L, and M. They are based on the Boeing 601 series satellite bus and will be keep the TDRS satellite system operational through the 2020s.

TDSR-K and TDRS-L were launched in 2013 and 2014.

The Tracking and Data Relay Satellite project is managed at NASA’s Goddard Space Flight Center.

TDRS-M was built as a follow on and replacement satellite necessary to maintain and expand NASA’s Space Network, according to a NASA description.

The gigantic satellite is about as long as two school buses and measures 21 meters in length by 13.1 meters wide.

It has a dry mass of 1800 kg (4000 lbs) and a fueled mass of 3,454 kilogram (7,615 lb) at launch.

Tracking and Data Relay Satellite artwork explains how the TDRS constellation enables continuous, global communications coverage for near-Earth spacecraft. Credit: NASA

TDRS-M will blastoff on a ULA Atlas V in the baseline 401 configuration, with no augmentation of solid rocket boosters on the first stage. The payload fairing is 4 meters (13.1 feet) in diameter and the upper stage is powered by a single-engine Centaur.

TDRS-M will be launched to a Geostationary orbit some 22,300 miles (35,800 km) above Earth.

“The final orbital location for TDRS-M has not yet been determined,” Buchanen told me.

The Atlas V booster is being assembled inside the Vertical Integration Facility (VIF) at SLC-41 and will be rolled out to the launch pad the day before liftoff with the TDRS-M science relay comsat comfortably encapsulated inside the nose cone.

NASA/contractor team poses with the Boeing built and to be ULA launched Tracking and Data Relay Satellite-M inside the inside the Astrotech payload processing facility clean room high bay in Titusville, FL, on July 13, 2017. Launch on ULA Atlas V slated for August 2017 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Carefully secured inside its shipping container, the TDRS-M satellite was transported on June 23 by a US Air Force cargo aircraft from Boeing’s El Segundo, California facility to Space Coast Regional Airport in Titusville, Florida, for preflight processing at Astrotech.

Watch for Ken’s onsite TDRS-M and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Trump Proposes $19.1 Billion 2018 NASA Budget, Cuts Earth Science and Education

NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer

NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer

The Trump Administration has proposed a $19.1 Billion NASA budget request for Fiscal Year 2018, which amounts to a $0.5 Billion reduction compared to the recently enacted FY 2017 NASA Budget. Although it maintains many programs such as human spaceflight, planetary science and the Webb telescope, the budget also specifies significant cuts and terminations to NASA’s Earth Science and manned Asteroid redirect mission as well as the complete elimination of the Education Office.

Overall NASA’s FY 2018 budget is cut approximately 3%, or $560 million, for the upcoming fiscal year starting in October 2017 as part of the Trump Administration’s US Federal Budget proposal rolled out on May 23, and quite similar to the initial outline released in March.

The cuts to NASA are smaller compared to other Federal science agencies also absolutely vital to the health of US scientific research – such as the NIH, the NSF, the EPA, DOE and NIST which suffer unconscionable double digit slashes of 10 to 20% or more.

The highlights of NASA’s FY 2018 Budget were announced by NASA acting administrator Robert Lightfoot during a ‘State of NASA’ speech to agency employees held at NASA HQ, Washington, D.C. and broadcast to the public live on NASA TV.

Lightfoot’s message to NASA and space enthusiasts was upbeat overall.

“What this budget tells us to do is to keep going!” NASA acting administrator Robert Lightfoot said.

“Keep doing what we’ve been doing. It’s very important for us to maintain that course and move forward as an agency with all the great things we’re doing.”

“I want to reiterate how proud I am of all of you for your hard work – which is making a real difference around the world. NASA is leading the world in space exploration, and that is only possible through all of your efforts, every day.”

“We’re pleased by our top line number of $19.1 billion, which reflects the President’s confidence in our direction and the importance of everything we’ve been achieving.”

Lightfoot recalled the recent White House phone call from President Trump to NASA astronaut & ISS Station Commander Peggy Whitson marking her record breaking flight for the longest cumulative time in space by an American astronaut.

Thus Lightfoot’s vision for NASA has three great purposes – Discover, Explore, and Develop.

“NASA has a historic and enduring purpose. It can be summarized in three major strategic thrusts: Discover, Explore, and Develop. These correspond to our missions of scientific discovery, missions of exploration, and missions of new technology development in aeronautics and space systems.”

Lightfoot further recounted the outstanding scientific accomplishments of NASA’s Mars rover and orbiters paving the path for the agencies plans to send humans on a ‘Journey to Mars’ in the 2030s.

“We’ve had a horizon goal for some time now of reaching Mars, and this budget sustains that work and also provides the resources to keep exploring our solar system and look beyond it.”

Lightfoot also pointed to upcoming near term science missions- highlighting a pair of Mars landers – InSIGHT launching next year as well as the Mars 2020 rover. Also NASA’s next great astronomical observatory – the James Webb Space Telescope (JWST).

“In science, this budget supports approximately 100 missions: 40 missions currently preparing for launch & 60 operating missions.”

“The James Webb Space Telescope is built!” Lightfoot gleefully announced.

“It’s done testing at Goddard and now has moved to Johnson for tests to simulate the vacuum of space.”

JWST is the scientific successor to the Hubble Space Telescope and slated for launch in Oct. 2018. The budget maintains steady support for Webb.

The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

The Planetary Sciences division receives excellent support with a $1.9 Billion budget request. It includes solid support for the two flagship missions – Mars 2020 and Europa Clipper as well as the two new Discovery class missions selected -Lucy and Psyche.

“The budget keeps us on track for the next selection for the New Frontiers program, and includes formulation of a mission to Jupiter’s moon Europa.”

SLS and Orion are making great progress. They are far beyond concepts, and as I mentioned, components are being tested in multiple ways right now as we move toward the first flight of that integrated system.”

NASA is currently targeting the first integrated launch of SLS and Orion on the uncrewed Exploration Mission-1 (EM-1) for sometime in 2019.

Top NASA managers recently decided against adding a crew of two astronauts to the flight after conducting detailed agency wide studies at the request of the Trump Administration.

NASA would have needed an additional $600 to $900 to upgrade EM-1 with humans.

Unfortunately Trump’s FY 2018 NASA budget calls for a slight reduction in development funding for both SLS and Orion – thus making a crewed EM-1 flight fiscally unviable.

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The budget request does maintain full funding for both of NASA’s commercial crew vehicles planned to restore launching astronauts to low Earth orbit (LEO) and the ISS from US soil on US rockets – namely the crewed Dragon and CST-100 Starliner – currently under development by SpaceX and Boeing – thus ending our sole reliance on Russian Soyuz for manned launches.

“Working with commercial partners, NASA will fly astronauts from American soil on the first new crew transportation systems in a generation in the next couple of years.”

“We need commercial partners to succeed in low-Earth orbit, and we also need the SLS and Orion to take us deeper into space than ever before.”

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

However the Trump Administration has terminated NASA’s somewhat controversial plans for the Asteroid Redirect Mission (ARM) – initiated under the Obama Administration – to robotically retrieve a near Earth asteroid and redirect it to lunar orbit for a visit by a crewed Orion to gather unique asteroidal samples.

“While we are ending formulation of a mission to an asteroid, known as the Asteroid Redirect Mission, many of the central technologies in development for that mission will continue, as they constitute vital capabilities needed for future human deep space missions.”

Key among those vital capabilities to be retained and funded going forward is Solar Electric Propulsion (SEP).

“Solar electric propulsion (SEP) for our deep space missions is moving ahead as a key lynchpin.”

The Trump Administration’s well known dislike for Earth science and disdain of climate change has manifested itself in the form of the termination of 5 current and upcoming science missions.

NASA’s FY 2018 Earth Science budget suffers a $171 million cut to $1.8 Billion.

“While we are not proposing to move forward with Orbiting Carbon Observatory-3 (OCO-3), Plankton, Aerosol, Cloud, ocean Ecosystem (PACE), Climate Absolute Radiance and Refractivity Observatory Pathfinder (CLARREO PF), and the Radiation Budget Instrument (RBI), this budget still includes significant Earth Science efforts, including 18 Earth observing missions in space as well as airborne missions.”

The DSCOVR Earth-viewing instruments will also be shut down.

NASA’s Office of Education will also be terminated completely under the proposed FY 2018 budget and the $115 million of funding excised.

“While this budget no longer supports the formal Office of Education, NASA will continue to inspire the next generation through its missions and the many ways that our work excites and encourages discovery by learners and educators. Let me tell you, we are as committed to inspiring the next generation as ever.”

Congress will now have its say and a number of Senators, including Republicans says Trumps budget is DOA.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Early Earth Was Almost Entirely Underwater, With Just A Few Islands

Earth's Hadean Eon is a bit of a mystery to us, because geologic evidence from that time is scarce. Researchers at the Australian National University have used tiny zircon grains to get a better picture of early Earth. Credit: NASA
Earth's Hadean Eon is a bit of a mystery to us, because geologic evidence from that time is scarce. Researchers at the Australian National University have used tiny zircon grains to get a better picture of early Earth. Credit: NASA

It might seem unlikely, but tiny grains of minerals can help tell the story of early Earth. And researchers studying those grains say that 4.4 billion years ago, Earth was a barren, mountainless place, and almost everything was under water. Only a handful of islands poked above the surface.

Continue reading “Early Earth Was Almost Entirely Underwater, With Just A Few Islands”

SpaceX Launching NASA Jason-3 Ocean Surveillance Satellite Jan. 17; with Barge Rocket Landing – Watch Live

SpaceX Falcon 9 rolls out to California launch pad in advance of Jason-3 launch for NASA on Jan. 17, 2016. Credit: SpaceX

The joint NASA-European ocean surveillance satellite named Jason-3 is poised for blastoff from SpaceX’s California launch pad on Sunday, Jan. 17 – followed immediately by another Falcon 9 rocket recovery landing on a barge at sea.

The weather forecast is outstanding! And you can watch all the excitement live!

The primary goal is to deliver Jason-3 to low Earth orbit, where it will gather global measurements of ocean topography, or wave heights, using radar altimitry. These data provide scientists with essential information about global and regional changes in the Earth’s seas such as tracking sea level rise that threatens the resilience of coastal communities and the health of our environment. Continue reading “SpaceX Launching NASA Jason-3 Ocean Surveillance Satellite Jan. 17; with Barge Rocket Landing – Watch Live”

Who Was Democritus?

Democritus, ancient Greek philosopher who is credited with the birth of atomic theory. Credit: phil-fak.uni-duesseldorf.de

As the philosopher Nietzsche famously said “He who would learn to fly one day must first learn to stand and walk and run and climb and dance; one cannot fly into flying.” This is certainly true when it comes to humanity’s understanding of the universe, something which has evolved over many thousands of years and been the subject of ongoing discovery.

And along the way, many names stand out as examples of people who achieved breakthroughs and helped lay the foundations of our modern understanding. One such person is Democritus, an ancient Greek philosopher who is viewed by many as being the “father of modern science”. This is due to his theory of universe that is made up of tiny “atoms”, which bears a striking resemblance to modern atomic theory.

Though he is typically viewed as one of Greece’s many pre-Socratic natural philosopher, many historians have argued that he is more rightly classified as a scientist, at least when compared to his contemporaries. There has also been significant controversy – particularly in Germany during the 19th century – over whether or not Democritus deserves credit for atomic theory.

This argument is based on the relationship Democritus had with contemporary philosopher Leucippus, who is renowned for sharing his theory about atoms with him. However, their theories came down to a different basis, a distinction that allows Democritus to be given credit for a theory that would go on to become a staple of the modern scientific tradition.

Hendrik ter Brugghen - Heraclitus, 1628. Credit: rijksmuseum.nl
Democritus, by Hendrik ter Brugghen – Heraclitus, 1628. Credit: rijksmuseum.nl

Birth and Early Life:

The precise date and location of Democritus birth is the subject the debate. While most sources claim he was born in Abdera, located in the northern Greek province of Thrace, around 460 BCE. However, other sources claim he was born in Miletus, a coastal city of ancient Anatolia and modern-day Turkey, and that he was born in 490 BCE.

It has been said that Democritus’ father was from a noble family and so wealthy that he received the Persian king Xerxes on the latter’s march through Abdera during the Second Persian War (480–479 BC). It is further argued that as a reward for his service, the Persian monarch gave his father and other Abderites gifts, and left several Magi among them. Democritus was apparently instructed by these Magi in astronomy and theology.

After his father had died, Democritus used his inheritance to finance a series of travels to distant countries. Desiring to feed his thirst for knowledge, Democritus traveled extensively across the known world, traveling to Asia, Egypt and (according to some sources) venturing as far as India and Ethiopia. His writings include descriptions of the the cities of Babylon and Meroe (in modern-day Sudan).

Upon returning to his native land, he occupied himself with the study of natural philosophy. He also traveled throughout Greece to acquire a better knowledge of its cultures and learned from many of Greece’s famous philosophers. His wealth allowed him to purchase their writings, and he wrote of them in his own works. In time, he would become one of the most famous of the pre-Socratic philosophers.

The ruins of the ancient Greeof Abdera, with the west gate shown. Credit:
The ruins of the ancient Greek city of Abdera, with the west gate shown. Credit: Wikipedia Commons/Marysas

Leucippus of Miletus had the greatest influence on him, becoming his mentor and sharing his theory of atomism with him. Democritus is also said to have known Anaxagoras, Hippocrates and even Socrates himself (though this remains unproven). During his time in Egypt, he learned from Egyptian mathematicians, and is said to have become acquainted with the Chaldean magi in Assyria.

In the tradition of the atomists, Democritus was a thoroughgoing materialists who viewed the world in terms of natural laws and causes. This differentiated him from other Greek philosophers like Plato and Aristotle, for whom philosophy was more teleological in nature – i.e. more concerned with the purpose of events rather than the causes, as well things like essence, the soul, and final causes.

According to the many descriptions and anecdotes about Democritus, he was known for his modesty, simplicity, and commitment to his studies. One story claims he blinded himself on purpose in order to be less distracted by worldly affairs (which is believed to be apocryphal). He was also known for his sense of humor and is commonly referred to as the “Laughing Philosopher” – for his capacity to laugh at human folly. To his fellow citizens, he was also known as “The Mocker”.

Scientific Contributions:

Democritus is renowned for being a pioneer of mathematics and geometry. He was among the first Greek philosophers to observe that a cone or pyramid has one-third the volume of a cylinder or prism with the same base and height. While none of his works on the subject survived the Middle Ages, his mathematical proofs are derived from other works with contain extensive citations to titles like On Numbers, On Geometrics, On Tangencies, On Mapping, and On Irrationals.

Right circular and oblique circular cones. Credit: Dominique Toussaint
Right circular and oblique circular cones. Credit: Dominique Toussaint

Democritus is also known for having spent much of his life experimenting with and examining plants and minerals. Similar to his work in mathematics and geometry, citations from existing works are used to infer the existence of works on the subject. These include On the Nature of Man, the two-volume collection On Flesh, On Mind, On the Senses, On Flavors, On Colors, Causes concerned with Seeds and Plants and Fruits, and to the three-volume collection Causes concerned with Animals.

From his examination of nature, Democritus developed what could be considered some of the first anthropological theories. According to him, human beings lived short lives in archaic times, forced to forage like animals until fear of wild animals then drove them into communities. He theorized that such humans had no language, and only developed it through the need to articulate thoughts and ideas.

Through a process of trial and error, human beings developed not only verbal language, but also symbols with which to communicate (i.e. written language), clothing, fire, the domestication of animals, and agriculture. Each step in this process led to more discoveries, more complex behaviors, and the many things that came to characterize civilized society.

In terms of astronomy and cosmology, Democritus was a proponent of the spherical Earth hypothesis. He believed that in the original chaos from which the universe sprang, the universe was composed of nothing but tiny atoms that came together to form larger units (a theory which bears a striking resemblance to The Big Bang Theory and Nebular Theory). He also believed in the existence of many worlds, which were either in state of growth or decay.

In a similar vein, Democritus advanced a theory of void which challenged the paradoxes raised by his fellow Greek philosophers, Parmenides and Zeno – the founders of metaphysical logic. According to these men, movement cannot exist because such a thing requires there to be a void – which is nothing, and therefore cannot exist. And a void cannot be termed as such if it is in fact a definable, existing thing.

To this, Democritus and other atomists argued that since movement is an observable phenomena, there must be a void. This idea previewed Newton’s theory of absolute space, in which space exists independently of any observer or anything external to it. Einstein’s theory of relativity also provided a resolution to the paradoxes raised by Parmenides and Zeno, where he asserted that space itself is relative and cannot be separated from time.

Democritus’ thoughts on the nature of truth also previewed the development of the modern scientific method. According to Democritus, truth is difficult, because it can only be perceived through senses-impressions which are subjective. Because of this, Aristotle claimed in his Metaphysics that Democritus was of the opinion that “either there is no truth or to us at least it is not evident.”

However, as Diogenes Laertius quoted in his 3rd century CE tract, Lives and Opinions of Eminent Philosophers: “By convention hot, by convention cold, but in reality atoms and void, and also in reality we know nothing, since the truth is at bottom.”

Diogenes Laërtius: Lives and Opinions of Eminent Philosophers. A biography of the Greek philosophers. Title page from year 1594. Credit: Public Domain
Diogenes Laertius, Lives and Opinions of Eminent Philosophers, makes mention of Democritus and his theories. Credit: Public Domain

Ultimately, Democritus’ opinion on truth came down to a distinction between two kinds of knowledge – “legitimate” (or “genuine”) and bastard (or “secret”). The latter is concerned with perception through the senses, which is subjective by nature. This is due to the fact that our sense-perception are influence by the shape and nature of atoms as they flow out from the object in question and make an impression on our senses.

“Legitimate” knowledge, by contrast, is achieved through the intellect, where sense-data is elaborated through reasoning. In this way, one can get from “bastard” impressions to the point where things like connections, patterns and causality can be determined. This is consistent with the inductive reasoning method later elaborated by Renee Descartes, and is a prime example of why Democritus is considered to be an early scientific thinker.

Atomic Theory:

However, Democritus greatest contribution to modern science was arguably the atomic theory he elucidated. According to Democritus’ atomic theory, the universe and all matter obey the following principles:

  • Everything is composed of “atoms”, which are physically, but not geometrically, indivisible
  • Between atoms, there lies empty space
  • Atoms are indestructible
  • Atoms have always been, and always will be, in motion
  • There are an infinite number of atoms, and kinds of atoms, which differ in shape, and size.

He was not alone in proposing atomic theory, as both his mentor Leucippus and Epicurus are believed to have proposed the earliest views on the shapes and connectivity of atoms. Like Democritus, they believed that the solidity of a material corresponded to the shape of the atoms involved – i.e. iron atoms are hard, water atoms are smooth and slippery, fire atoms are light and sharp, and air atoms are light and whirling.

Democritus' model of an atom was one of an intert solid that ineracted mechanically with other atoms. Credit: .science.edu.sg
Democritus’ model of an atom was one of an inert solid that interacted mechanically with other atoms. Credit: .science.edu.sg

However, Democritus is credited with illustrating and popularizing the concept, and for his descriptions of atoms which survived classical antiquity to influence later philosophers. Using analogies from our sense experiences, Democritus gave a picture or an image of an atom that distinguished them from each other by their shape, size, and the arrangement of their parts.

In essence, this model was one of an inert solid that excluded other bodies from its volume, and which interacted with other atoms mechanically. As such, his model included physical links (i.e. hooks and eyes, balls and sockets) that explained how connections occurred between them. While this bears little resemblance to modern atomic theory (where atoms are not inert and interact electromagnetically), it is more closely aligned with that of modern science than any other theory of antiquity.

While there is no clear explanation as to how scholars of classical antiquity came to theorize the existence of atoms, the concept proved to be influential, being picked up by Roman philosopher Lucretius in the 1st century CE and again during the Scientific Revolution. In addition to being indispensable to modern molecular and atomic theory, it also provided an explanation as to why the concept of a void was necessary in nature.

If all matter was composed of tiny, indivisible atoms, then there must also be a great deal of open space between them. This reasoning has also gone on to inform out notions of cosmology and astronomy, where Einstein’s theory of special relativity was able to do away with the concept of a “luminiferous aether” in explaining the behavior of light.

Early atomic theory stated that different materials had differently shaped atoms. Credit: github.com
Early atomic theory stated that different materials had differently shaped atoms. Credit: github.com

Diogenes Laertius summarized Democritus atomic theory as follows in Lives and Opinions of Eminent Philosophers:

“That atoms and the vacuum were the beginning of the universe; and that everything else existed only in opinion. That the worlds were infinite, created, and perishable. But that nothing was created out of nothing, and that nothing was destroyed so as to become nothing. That the atoms were infinite both in magnitude and number, and were borne about through the universe in endless revolutions. And that thus they produced all the combinations that exist; fire, water, air, and earth; for that all these things are only combinations of certain atoms; which combinations are incapable of being affected by external circumstances, and are unchangeable by reason of their solidity.”

Death and Legacy:

Democritus died at the age of ninety, which would place his death at around 370 BCE; though some writers disagree, with some claiming he lived to 104 or even 109. According to Marcus Aurelius’ book Meditations, Democritus was eaten by lice or vermin, although in the same passage he writes that “other lice killed Socrates”, implying that this was meant metaphorically. Since Socrates died at the hands of the Athenian government who condemned him, it is possible that Aurelius attributed Democritus death to human folly or politics.

While Democritus was highly esteemed amongst his contemporaries, there were also those who resented him. This included Plato who, according to some accounts, disliked him so much that he wished that all his books would be burned. However, Plato’s pupil Aristotle was familiar with the works of Democritus and mentioned him in both Metaphysics and Physics, where he described him as a “physicist” who did not concern himself with the ideals of form or essence.

Democritus meditating on the seat of the soul by Léon-Alexandre Delhomme (1868). Credit: Pubic Domain
Democritus meditating on the seat of the soul, by Léon-Alexandre Delhomme (1868). Credit: Pubic Domain

Ultimately, Democritus is credited as being one of the founders of the modern science because his methods and theories closely resemble those of modern astronomers and physicists. And while his version of the atomic model differs greatly from our modern conceptions, his work was of undoubted value, and was a step in an ongoing process that included such scientists as John Dalton, Neils Bohr and even Albert Einstein.

As always, science is an process of continuing discovery, where new breakthroughs are built upon the foundations of the old and every generations attempts to see a little farther by standing on the shoulders of those who came before.

We have many interesting articles about atomic theory here at Universe Today. Here’s one about John Dalton’s atomic model, Neils Bohr’s atomic model, the “Plum Pudding” atomic model.

For more information, check out The History of the Atom – Democritus.

Astronomy Cast has a wonderful episode on the subject, titled Episode 392: The Standard Model – Intro