The Crab Nebula Looks Completely Different in X-Rays, Revealing its Magnetic Fields

Credits: Magnetic field lines: NASA/Bucciantini et al; X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech

Located about 6,500 light-years away in the constellation Taurus resides one of the best-studied cosmological objects known as the Crab Nebula (aka. Messier 1). Originally discovered in the 18th century by English astronomer John Bevis in 1731, the Crab Nebula became the first object included by astronomer Charles Messier in his catalog of Deep Sky Objects. Because of its extreme nature, scientists have been studying the Crab Nebula for decades to learn more about its magnetic field, its high-energy emissions (x-rays), and how these accelerate particles to close to the speed of light.

Astronomers have been particularly interested in studying the polarization of the x-rays produced by the pulsar and what that can tell us about the nebula’s magnetic field. When studies were first conducted in the 1970s, astronomers had to rely on a sounding rocket to get above Earth’s atmosphere and measure the polarization using special sensors. Recently, an international team of astronomers used data obtained by NASA’s Imaging X-ray Polarimetry Explorer (IXPE) to create a detailed map of the Crab Nebula’s magnetic field that has resolved many long-standing mysteries about the object.

Continue reading “The Crab Nebula Looks Completely Different in X-Rays, Revealing its Magnetic Fields”

Astronomers Find a Brand new Pulsar That's Probably Less Than 14 Years old

Artist view of the neutron star VT 1137-0337. Credit: Melissa Weiss, NRAO/AUI/NSF

Neutron stars are dense remnants of large stars. They are the collapsed cores of stars formed during a supernova explosion. While we know generally how they form, we are still learning how they evolve, particularly when they are young. But that’s starting to change thanks to large sky surveys, which have allowed astronomers to observe a neutron star that could be little more than a decade old.

Continue reading “Astronomers Find a Brand new Pulsar That's Probably Less Than 14 Years old”

The Crab Nebula Seen in 3-Dimensions

The Crab Nebula is arguably one of the most famous objects in the night sky.  It was delineated as M1 in Messier’s famous catalogue.  It is the remnants of a supernova that was actually visible in day time almost 1000 years ago.  And its remnants have been astonishing both professional and amateur astronomers ever since.

Now thanks to modern technology, we can get an updated view of this iconic supernova remnant. Researchers from a variety of institutions, led by Thomas Martin from the Universite Laval, have created a three dimensional image of the nebula for the first time ever.

Continue reading “The Crab Nebula Seen in 3-Dimensions”

Gamma Rays Detected Coming From the Crab Nebula

Crab Nebula (Credit:NASA, ESA and Allison Loll/Jeff Hester (Arizona State University). Acknowledgement: Davide De Martin (ESA/Hubble))

Most people with any interest in astronomy know about the Crab Nebula. It’s a supernova remnant in the constellation Taurus, and its image is all over the place. Google “Hubble images” and it’s right there with other crowd favorites, like the Pillars of Creation.

The Crab Nebula is one of the most-studied objects in astronomy. It’s the brightest source of gamma rays in the sky, and that fact is being used to establish the function of a new telescope called the Schwarschild-Couder Telescope.

Continue reading “Gamma Rays Detected Coming From the Crab Nebula”

Stunning View of the Crab Nebula Just Got Five Times Better

Astronomers have produced a highly detailed image of the Crab Nebula, by combining data from five telescopes, spanning nearly the entire breadth of the electromagnetic spectrum. Credit: NASA, ESA, G. Dubner (IAFE, CONICET-University of Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; and Hubble/STScI.

Images of the Crab Nebula are always a treat because it has such intriguing and varied structure. Also, just knowing that this stellar explosion was witnessed and recorded by people on Earth more than 900 years ago (with the supernova visible to the naked eye for about two years) gives this nebula added fascination.

A new image just might be the biggest Crab Nebula treat ever, as five different observatories combined forces to create an incredibly detailed view, with stunning details of the nebula’s interior region.

Data from the five telescopes span nearly the entire breadth of the electromagnetic spectrum, from radio waves seen by the Karl G. Jansky Very Large Array (VLA) to the powerful X-ray glow as seen by the orbiting Chandra X-ray Observatory. And, in between that range of wavelengths, the Hubble Space Telescope’s crisp visible-light view, and the infrared perspective of the Spitzer Space Telescope.

Astronomers have produced a highly detailed image of the Crab Nebula, by combining data from telescopes spanning nearly the entire breadth of the electromagnetic spectrum. This image combines data from five different telescopes: the VLA (radio) in red; Spitzer Space Telescope (infrared) in yellow; Hubble Space Telescope (visible) in green; XMM-Newton (ultraviolet) in blue; and Chandra X-ray Observatory (X-ray) in purple. Credit: NASA, ESA, G. Dubner (IAFE, CONICET-University of Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; and Hubble/STScI.

The Crab is 6,500 light-years from Earth and spans about 10 light-years in diameter. The supernova that created it was first witnessed in 1054 A. D. At its center is a super-dense neutron star that is as massive as the Sun but with only the size of a small town. This pulsar rotates every 33 milliseconds, shooting out spinning lighthouse-like beams of radio waves and light. The pulsar can be seen as the bright dot at the center of the image.

Scientists say the nebula’s intricate shape is caused by a complex interplay of the pulsar, a fast-moving wind of particles coming from the pulsar, and material originally ejected by the supernova explosion and by the star itself before the explosion.

A new x-ray image of the Crab Nebula by the Chandra X-ray Observatory. Credit: X-ray: NASA/CXC/SAO.

For this new image, the VLA, Hubble, and Chandra observations all were made at nearly the same time in November of 2012. A team of scientists led by Gloria Dubner of the Institute of Astronomy and Physics (IAFE), the National Council of Scientific Research (CONICET), and the University of Buenos Aires in Argentina then made a thorough analysis of the newly revealed details in a quest to gain new insights into the complex physics of the object. They are reporting their findings in the Astrophysical Journal (see the pre-print here).

About the central region, the team writes, “The new HST NIR [near infrared] image of the central region shows the well-known elliptical torus around the pulsar, composed of a series of concentric narrow features of variable intensity and width… The comparison of the radio and the X-ray emission distributions in the central region suggests the existence of a double-jet system from the pulsar, one detected in X-rays and the other in radio. None of them starts at the pulsar itself but in its environs.”

“Comparing these new images, made at different wavelengths, is providing us with a wealth of new detail about the Crab Nebula. Though the Crab has been studied extensively for years, we still have much to learn about it,” Dubner said.

A multi-wavelength layout of the Crab Nebula. Credit: (Credit: X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA/JPL/Caltech; Radio: NSF/NRAO/VLA; Ultraviolet: ESA/XMM-Newton).

Read the team’s paper: Morphological properties of the Crab Nebula: a detailed multiwavelength study based on new VLA, HST, Chandra and XMM-Newton images
Sources: Chandra, Hubble

Messier 1 (M1) – The Crab Nebula

The Crab Nebula (aka. Messier Object 1) is an example of a supernova explosion that emitted cosmic rays. Credit: NASA

In the 18th century, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects in the night sky. Initially, he thought these were comets, which he was attempting to locate at the time. However, astronomers would later discover that these objects were in fact nebulae, galaxies and star clusters. Between the years of 1758 and 1782, Messier compiled a list of approximately 100 of these objects.

His intention was to ensure that other astronomers would not mistake these objects for comets. But in time, this list – known as the Messier Catalog – served a higher purpose. In addition to being a collection of some of the most beautiful objects in the night sky, the catalog was also an important milestone in the discovery and research of Deep Sky objects. The first item in the catalog is the famous Crab Nebula – hence its designation as Messier Object 1, or M1.


Messier 1 (aka. M1, NGC 1952, Sharpless 244, and the Crab Nebula) is a supernova remnant located in the Perseus Arm of the Milky Way Galaxy, roughly 6500 ± 1600 light years from Earth. Like all supernova remnants, it is an expanding cloud of gas that was created during the explosion of a star. This material is spread over a volume approximately 13 ± 3 ly in diameter, and is still expanding at a velocity of about 1,500 km/s (930 mi/s).

Based on its current rate of expansion, it is assumed that the overall deceleration of the nebula’s expansion must has decreased since the initial supernova. Essentially, after the explosion occurred, the nebula’s pulsar would have began to emit radiation that fed the nebula’s magnetic field, thus expanding it and forcing it outward.

The supernova that produced the Crab Nebula was detected by naked-eye observers around the world in 1054 A.D. This composite image uses data from NASA’s Great Observatories, Chandra, Hubble, and Spitzer, to show that a superdense neutron star is energizing the expanding Nebula by spewing out magnetic fields and a blizzard of extremely high-energy particles. The Chandra X-ray image is shown in light blue, the Hubble Space Telescope optical images are in green and dark blue, and the Spitzer Space Telescope’s infrared image is in red. The size of the X-ray image is smaller than the others because ultrahigh-energy X-ray emitting electrons radiate away their energy more quickly than the lower-energy electrons emitting optical and infrared light. The neutron star is the bright white dot in the center of the image.
The supernova that produced the Crab Nebula was detected by naked-eye observers around the world in 1054 A.D. This composite image uses data from NASA’s Great Observatories, Chandra, Hubble, and Spitzer.

In visible light, the Crab Nebula consists of an oval-shaped mass of filaments – whose spectral emission lines are split into both red and blue-shifted components – which surround a blue central region. The filament are leftover from the outer layers of the former star’s atmosphere, and consist primarily of hydrogen and helium, along with traces of carbon, oxygen, nitrogen and heavier elements. The filaments’ temperatures are typically between 11,000 and 18,000 K.

The blue region, meanwhile, is the result of highly polarized synchrotron radiation, which is emitted by high-energy electrons in a strong magnetic field. The curved path of these electrons is due to the strong magnetic field produced by the neutron star at the center of the nebula (see below). One of the many components of the Crab Nebula is a helium-rich torus which is visible as an east-west band crossing the pulsar region.

The torus accounts for about 25% of the nebula’s visible ejecta and is believed to be made up of 95% helium. As yet, there has been no plausible explanation for the structure of the torus. And while it is very difficult to gauge the total mass of the nebula, official estimates place it at 4.6 ± 1.8 Solar masses – i.e 5.5664 to 12.7232 × 1030 kg.

Crab Pulsar:

At the center of the Crab Nebula are two faint stars, one of which is its progenitor (i.e the one that created it). It is because of this star that M1 is a strong source of radio waves, X-rays and Gamma-ray radiation. The remnant of supernova SN 1054, which was widely observed on Earth in the year 1054, this star was discovered in 1968 and has since been designated as a radio pulsar.

The Crab Nebula Pulsar, M1. Both are sequences of observations that show the expansion of shock waves emanating from the Pulsar interacting with the surrounding nebula. The Crab Pulsar actually pulsates 30 times per second a result of its rotation rate and the relative offset of the magnetic pole. Charndra X-Rays (left), Hubble Visible light (right). (Credit: NASA, JPL-Caltech)
Observation sequences of M1, showing the expansion of shock waves emanating from the Pulsar interacting with the surrounding nebula.  Charndra X-Rays (left), Hubble Visible light (right). (Credit: NASA, JPL-Caltech)

Known as the Crab Pulsar (or NP0532), this rapidly rotating star is believed to be about 28–30 km (17–19 mi) in diameter and emits pulses of radiation – ranging from radio wave and X-ray  – every 33 milliseconds. Like all isolated pulsars, its period is slowing very gradually, and the energy released as the pulsar slows down is enormous. The Crab Pulsar is also the source of the nebula’s synchrotron radiation, which has a total luminosity about 75,000 times greater than that of the Sun.

The pulsar’s extreme energy output also creates an unusually dynamic region at the center of the Crab Nebula. While most astronomical objects only show changes over timescales of many years, the inner parts of the Crab show changes over the course of only a few days. The most dynamic feature in the inner part of the nebula is the point where the pulsar’s equatorial wind slams into the bulk of the nebula, forming a shock front (see above image).

The Crab Pulsar is also surrounded by an expanding gas shell which encompasses its spectroscopic companion star, which in turn orbits the neutron star every 133 days. This pulsar was the first one which was also verified in the optical part of the spectrum.

History of Observation:

The very first recorded information on this supernova event reaches as far back as July 4, 1054 A.D. by Chinese astronomers who marked the presence of a “new star” visible in daylight for 23 days and 653 nights. The event may have also been recorded by the Anasazi, Navajo and Mimbres First Nations of North America in their artwork as well.

Charles Messier, French astronomer, at the age of 40, by Ansiaume. Credit: Public Domain.
Charles Messier, French astronomer, at the age of 40, by Nicolas Ansiaume. Credit: Public Domain.

In more modern times, the nebula was cataloged as a discovery by British amateur astronomer John Bevis in 1731, and independently by Charles Messier on August 28th, 1758 while looking for the return of Comet Halley. Although Bevis had added it to his “Uranographia Britannica”, Messier recognized what he had located had no proper motion, and was therefore not a comet. However, Messier did credit Bevis’ discovery when he learned of it years later.

By September 12th, 1758, Messier hit upon the idea of compiling a catalog of objects that weren’t comets, in order to help other astronomers avoid similar mistakes. Considering M1’s position, only slightly more than a degree from the ecliptic plane, this was a very good idea. Especially since M1 was again confused with Halley’s Comet when it returned in 1835.

The name Crab Nebula was first suggested by William Parsons, the Third Earl of Rosse, who observed it while at Birr Castle in 1884. The name was apparently due to the drawing he made of it, which resembled a crab. When he observed it again in 1848 using a ]telescope with better resolution, he could not confirm the resemblance. But the name had become popular by this point and has stuck ever since.

Our eyes would never see the Crab Nebula or Messier 1 as this Hubble image shows it. Image credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)
Our eyes would never see the Crab Nebula as this Hubble image shows it. Credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)

All of the early observers – including Herschel, Bode, Messier and Lassell – apparently mistook the filamentary structures of the Nebula as an  indication of stellar structure. As Messier himself described it:

“Nebula above the southern horn of Taurus, it doesn’t contain any star; it is a whitish light, elongated in the shape of a flame of a candle, discovered while observing the comet of 1758. See the chart of that comet, Mem. Acad. of the year 1759, page 188; observed by Dr. Bevis in about 1731. It is reported on the English Celestial Atlas.”

Sir Williams Herschel’s writing on the nebula appeared in the 74th volume of the Philosophical Transactions of the Royal Society of London, which was released in 1784. As he described it:

“To these may added the 1st [M1], 3d, 27, 33, 57, 79, 81, 82, 101 [of Messier’s catalog], which in my 7, 10, and 20-feet reflectors shewed a mottled kind of nebulosity, which I shall call resolvable; so that I expect my present telescope will, perhaps, render the stars visible of which I suppose them to be composed…”

Reproduction of the first depiction of the Messier 1 nebula by Lord Rosse (1844) (colour-inverted to appear white-on-black) William Parsons, 3rd Earl of Rosse -
Reproduction of the first depiction of the nebula by Lord Rosse (1844). Credit:

But it was Parsons (aka. Lord Rosse) who first recognized M1 for what we know it as today. As he recorded when viewing it for the first time (in 1844):

“Fig. 81 is also a cluster; we perceive in this [36-inch telescope], however, a considerable change of appearance; it is no longer an oval resolvable [mottled] Nebula; we see resolvable filaments singularly disposed, springing principally from its southern extremity, and not, as is usual in clusters, irregularly in all directions. Probably greater power would bring out other filaments, and it would then assume the ordinary form of a cluster. It is stubbed with stars, mixed however with a nebulosity probably consisting of stars too minute to be recognized. It is an easy object, and I have shown it to many, and all have been at once struck with its remarkable aspect. Everything in the sketch can be seen under moderately favourable circumstances.”

Locating Messier 1:

The Crab Nebula is easily visible in the night sky near the Taurus constellation, whenever light pollution is not an issue. It can be located by identifying Zeta Tauri, a third magnitude star located east/northeast of Aldebaran. With dark sky conditions, it can be seen as a tiny, hazy patch with binoculars and small telescopes with low magnification. If sky conditions are bright, it may be harder to locate with modest equipment.

The constellation Taurus. Credit:
Messier Object 1 sits between the Taurus, Orion, and Auriga constellations. Credit:

With a little more magnification, it is seen as a nebulous oval patch, surrounded by haze. In telescopes starting with 4-inch aperture, some detail in its shape becomes apparent, with some suggestion of mottled or streak structure in the inner part of the nebula. To the amateur astronomer, M1 does indeed look similar to a faint comet without a tail.

As Messier 1 is situated only 1 1/2 degrees from the ecliptic, there are frequent conjunctions and occasional transits of planets, as well as occultations by the Moon. And for the sake of simplicity, here are the vital statistics on this Messier Object:

Object Name: Messier 1
Alternative Designations: NGC 1952, M1, Sharpless 244, Crab Nebula
Object Type: Supernova Remnant
Constellation: Taurus
Right Ascension: 05 : 34.5 (h:m)
Declination: +22 : 01 (deg:m)
Distance: 6.3 (kly)
Visual Brightness: 8.4 (mag)
Apparent Dimension: 6×4 (arc min)

We wish you luck in locating it in the night sky. And should you find it, enjoy your observations!

We have written many great articles about the Crab Nebula and Messier Objects here at Universe Today. Here’s What Is The Crab Nebula?, The Peculiar Pulsar in the Crab Nebula, and Top Five Celestial Objects Anyone Can See With A Small Telescope.

Be sure to check out our complete Messier Catalog.

For more information, check out the SEDS Messier Database.

Spin! Crab Pulsar Speed Jumps Linked To Billions Of Tiny Vortices

Artist's conception of a gamma-ray pulsar. Gamma rays are shown in purple, and radio radiation in green. Credit: NASA/Fermi/Cruz de Wilde

Pulsars — those supernova leftovers that are incredibly dense and spin very fast — may change their speed due to activity of billions of vortices in the fluid beneath their surface, a new study says.

The work is based on a combination of research and modelling and looks at the Crab Nebula pulsar, which has periodic slowdowns in its rotation of at least 0.055 nanoseconds. Occasionally, the Crab and other pulsars see their spins speed up in an event called a “glitch”. Luckily for astronomers, there is a wealth of data on Crab because the Jodrell Bank Observatory in the United Kingdom looked at it almost daily for the last 29 years.

A glitch, the astronomers said in a statement, is “caused by the unpinning and displacement of vortices that connect the [pulsar’s] crust with the mixture of particles containing superfluid neutrons beneath the crust.”

“Surprisingly, no one tried to determine a lower limit to glitch size before. Many assumed that the smallest glitch would be caused by a single vortex unpinning. The smallest glitch is clearly much larger than we expected,” stated Danai Antonopoulou from the University of Amsterdam.

The astronomers added they will need more observations of other pulsars to better understand the results.

You can read the paper at the Monthly Notices of the Royal Astronomical Society or in preprint version on Arxiv. The research was led by C.M. Espinoza of the University of Manchester and Chile’s Pontifical Catholic University.

Source: NOVA

Virtual Star Party – January 5, 2014: Jupiter in Opposition and 6 Telescopes!

Hosts: Fraser Cain and Scott Lewis

David Dickinson in Florida
Michael Phillips in North Carolina
Bill McLaughlin in Oregon
Gary Gonella in California
Paul Stewart in New Zealand
Shahrin Ahmad in Malaysia
Stuart Foreman in San Francisco
Thad Szabo in California
Continue reading “Virtual Star Party – January 5, 2014: Jupiter in Opposition and 6 Telescopes!”

Argon – The First Noble Gas Molecules Discovered In Space

Messier 1 Hubble Image: Credit - NASA, ESA, J. Hester and A. Loll (Arizona State University)

There are only six of them: radon, helium, neon, krypton, xenon and the first molecules to be discovered in space – argon. They are all odorless, colorless, monatomic gases with very low chemical reactivity. So where did a team of astronomers using ESA’s Herschel Space Observatory make their rather unusual discovery? Try Messier 1… The “Crab” Nebula!

In a study led by Professor Mike Barlow (UCL Department of Physics & Astronomy), a UCL research team was taking measurements of cold gas and dust regions of this famous supernova remnant in infrared light when they stumbled upon the chemical signature of argon hydrogen ions. By observing in longer wavelengths of light than can be detected by the human eye, the scientists gave credence to current theories of how argon occurs naturally.

“We were doing a survey of the dust in several bright supernova remnants using Herschel, one of which was the Crab Nebula. Discovering argon hydride ions here was unexpected because you don’t expect an atom like argon, a noble gas, to form molecules, and you wouldn’t expect to find them in the harsh environment of a supernova remnant,” said Barlow.

When it comes to a star, they are hot and ignite the visible spectrum. Cold objects like nebular dust are better seen in infrared, but there’s only one problem – Earth’s atmosphere interferes with the detection of that end of the electromagnetic spectrum. Even though we can see nebulae in visible light, what shows is the product of hot, excited gases, not the cold and dusty regions. These invisible regions are the specialty of Herschel’s SPIRE instruments. They map the dust in far-infrared with their spectroscopic observations. In this instance, the researchers were somewhat astounded when they found some very unusual data which required time to fully understand.

“Looking at infrared spectra is useful as it gives us the signatures of molecules, in particular their rotational signatures,” Barlow said. “Where you have, for instance, two atoms joined together, they rotate around their shared center of mass. The speed at which they can spin comes out at very specific, quantized, frequencies, which we can detect in the form of infrared light with our telescope.”

According to the news release, elements can exist in varying forms known as isotopes. These have different numbers of neutrons in the atomic nuclei. When it comes to properties, isotopes can be somewhat alike to each other, but they have different masses. Because of this, the rotational speed is dependent on which isotopes are present in a molecule. “The light coming from certain regions of the Crab Nebula showed extremely strong and unexplained peaks in intensity around 618 gigahertz and 1235 GHz.” By comparing data of known properties of different molecules, the science team came to the conclusion the mystery emission was the product of spinning molecular ions of argon hydride. What’s more, it could be isolated. The only argon isotope which could spin like that was argon-36! It would appear the energy released from the central neutron star in the Crab Nebula ionized the argon, which then combined with hydrogen molecules to form the molecular ion ArH+.

Professor Bruce Swinyard (UCL Department of Physics & Astronomy and Rutherford Appleton Laboratory), a member of the team, added: “Our discovery was unexpected in another way — because normally when you find a new molecule in space, its signature is weak and you have to work hard to find it. In this case it just jumped out of our spectra.”

Is this instance of argon-36 in a supernova remnant natural? You bet. Even though the discovery was the first of its kind, it is doubtless not the last time it will be detected. Now astronomers can solidify their theories of how argon forms. Current predictions allow for argon-36 and no argon-40 to also be part of supernova structure. However, here on Earth, argon-40 is a dominant isotope, one which is created through the radioactive decay of potassium in rocks.

Noble gas research will continue to be a focus of scientists at UCL. As an amazing coincidence, argon, along with other noble gases, was discovered at UCL by William Ramsay at the end of the 19th century! I wonder what he would have thought had he known just how very far those discoveries would take us?

Original Story Source: University College London (UCL) Press Release