Stars Boil Before They Blow Up, Says NuSTAR

Supernovas are some of the most energetic and powerful events in the observable Universe. Briefly outshining entire galaxies, they are the final, dying  outbursts of stars several times more massive than our Sun. And while we know supernovas are responsible for creating the heavy elements necessary for everything from planets to people to power tools,  scientists have long struggled to determine the mechanics behind the sudden collapse and subsequent explosion of massive stars.

Now, thanks to NASA’s NuSTAR mission, we have our first solid clues to what happens before a star goes “boom.”

The image above shows the supernova remnant Cassiopeia A (or Cas A for short) with NuSTAR data in blue and observations from the Chandra X-ray Observatory in red, green, and yellow. It’s the shockwave left over from the explosion of a star about 15 to 25 times more massive than our Sun over 330 years ago*, and it glows in various wavelengths of light depending on the temperatures and types of elements present.

Artist's concept of NuSTAR in orbit. (NASA/JPL-Caltech)
Artist’s concept of NuSTAR in orbit. (NASA/JPL-Caltech)

Previous observations with Chandra revealed x-ray emissions from expanding shells and filaments of hot iron-rich gas in Cas A, but they couldn’t peer deep enough to get a better idea of what’s inside the structure. It wasn’t until NASA’s Nuclear Spectroscopic Telescope Array — that’s NuSTAR to those in the know — turned its x-ray vision on Cas A that the missing puzzle pieces could be found.

And they’re made of radioactive titanium.

Many models have been made (using millions of hours of supercomputer time) to try to explain core-collapse supernovas. One of the leading ones has the star ripped apart by powerful jets firing from its poles — something that’s associated with even more powerful (but focused) gamma-ray bursts. But it didn’t appear that jets were the cause with Cas A, which doesn’t exhibit elemental remains within its jet structures… and besides, the models relying on jets alone didn’t always result in a full-blown supernova.

As it turns out, the presence of asymmetric clumps of radioactive titanium deep within the shells of Cas A, revealed in high-energy x-rays by NuSTAR, point to a surprisingly different process at play: a “sloshing” of material within the progenitor star that kickstarts a shockwave, ultimately tearing it apart.

Watch an animation of how this process occurs:

The sloshing, which occurs over a time span of a mere couple hundred milliseconds — literally in the blink of an eye — is likened to boiling water on a stove. When the bubbles break through the surface, the steam erupts.

Only in this case the eruption leads to the insanely powerful detonation of an entire star, blasting a shockwave of high-energy particles into the interstellar medium and scattering a periodic tableful of heavy elements into the galaxy.

In the case of Cas A, titanium-44 was ejected, in clumps that echo the shape of the original sloshing asymmetry. NuSTAR was able to image and map the titanium, which glows in x-ray because of its radioactivity (and not because it’s heated by expanding shockwaves, like other lighter elements visible to Chandra.)

“Until we had NuSTAR we couldn’t really see down into the core of the explosion,” said Caltech astronomer Brian Grefenstette during a NASA teleconference on Feb. 19.

Illustration of the pre-supernova star in Cassiopeia A. It's thought that its layers were "turned inside out" just before it detonated. (NASA/CXC/M.Weiss)
Illustration of the pre-supernova star in Cassiopeia A. It’s thought that its layers were “turned inside out” just before it detonated. (NASA/CXC/M.Weiss)

“Previously, it was hard to interpret what was going on in Cas A because the material that we could see only glows in X-rays when it’s heated up. Now that we can see the radioactive material, which glows in X-rays no matter what, we are getting a more complete picture of what was going on at the core of the explosion.”

– Brian Grefenstette, lead author, Caltech

Okay, so great, you say. NASA’s NuSTAR has found the glow of titanium in the leftovers of a blown-up star, Chandra saw some iron, and we know it sloshed and ‘boiled’ a fraction of a second before it exploded. So what?

“Now you should care about this,” said astronomer Robert Kirshner of the Harvard-Smithsonian Center for Astrophysics. “Supernovae make the chemical elements, so if you bought an American car, it wasn’t made in Detroit two years ago; the iron atoms in that steel were manufactured in an ancient supernova explosion that took place five billion years ago. And NuSTAR shows that the titanium that’s in your Uncle Jack’s replacement hip were made in that explosion too.

“We’re all stardust, and NuSTAR is showing us where we came from. Including our replacement parts. So you should care about this… and so should your Uncle Jack.”

And it’s not just core-collapse supernovas that NuSTAR will be able to investigate. Other types of supernovas will be scrutinized too — in the case of SN2014J, a Type Ia that was spotted in M82 in January, even right after they occur.

“We know that those are a type of white dwarf star that detonates,” NuSTAR principal investigator Fiona Harrison responded to Universe Today during the teleconference. “This is very exciting news… NuSTAR has been looking at [SN2014J] for weeks, and we hope to be able to say something about that explosion as well.”

Previous imaging with Chandra (left, middle) is combined with new data from NuSTAR (right) to make a complete image of a supernova remnant. (NASA/JPL-Caltech/CXC/SAO)
Previous imaging with Chandra (left, middle) is combined with new data from NuSTAR (right) to make a complete image of a supernova remnant. (NASA/JPL-Caltech/CXC/SAO)

One of the most valuable achievements of the recent NuSTAR findings is having a new set of observed constraints to place on future models of core-collapse supernovas… which will help provide answers — and likely new questions — about how stars explode, even hundreds or thousands of years after they do.

“NuSTAR is pioneering science, and you have to expect that when you get new results, it’ll open up as many questions as you answer,” said Kirshner.

Launched in June of 2012, NuSTAR is the first focusing hard X-ray telescope to orbit Earth and the first telescope capable of producing maps of radioactive elements in supernova remnants.

Read more on the JPL news release here, and listen to the full press conference here.

*As Cas A resides 11,000 light-years from Earth, the actual date of the supernova would be about 11,330 years ago. Give or take a few.

Runaway Pulsar Produces Longest Jet Trail Ever Observed

One of the fastest-moving pulsars ever observed is spewing out a record-breaking jet of high-energy particles that stretches 37 light years in length – the longest object in the Milky Way galaxy.

“We’ve never seen an object that moves this fast and also produces a jet,” said Lucia Pavan of the University of Geneva in Switzerland and lead author of a paper analyzing the object. “By comparison, this jet is almost 10 times longer than the distance between the sun and our nearest star.”

The pulsar, a type of neutron star, is has the official moniker of IGR J11014-6103, but is also known as the “Lighthouse nebula.” Astronomers say the pulsar’s corkscrew-like trajectory can likely be traced back to its birth in the collapse and subsequent explosion of a massive star. The curly-cue pattern in the trail suggests the pulsar is wobbling like a spinning top.

The team says that their findings suggest that “jets are common to rotation-powered pulsars, and demonstrate that supernovae can impart high kick velocities to misaligned spinning neutron stars, possibly through distinct, exotic, core-collapse mechanisms.”

The object was first seen by the European Space Agency satellite INTEGRAL. The pulsar is located about 60 light-years away from the center of the supernova remnant SNR MSH 11-61A in the constellation of Carina. Its implied speed is between 4 – 8 million km/hr (2.5 million and 5 million mph), making it one of the fastest pulsars ever observed.

IGR J11014-6103 also is producing a cocoon of high-energy particles that enshrouds and trails behind it in a comet-like tail. This structure, called a pulsar wind nebula, has been observed before, but the Chandra data show the long jet and the pulsar wind nebula are almost perpendicular to one another.

Usually, the spin axis and jets of a pulsar point in the same direction as they are moving.

“We can see this pulsar is moving directly away from the center of the supernova remnant based on the shape and direction of the pulsar wind nebula,” said co-author Pol Bordas, from the University of Tuebingen in Germany. “The question is, why is the jet pointing off in this other direction?”

One possibility requires an extremely fast rotation speed for the iron core of the star that exploded. A problem with this scenario is that such fast speeds are not commonly expected to be achievable.

“With the pulsar moving one way and the jet going another, this gives us clues that exotic physics can occur when some stars collapse,” said co-author Gerd Puehlhofer also of the University of Tuebingen.

Read the team’s paper.

Source: Chandra

Stars in this Jam-Packed Galaxy are 25 Times Closer Together than in the Milky Way

Meet galaxy M60-UCD1. This is not your average, every day, ordinary galaxy. First of all, it’s what is known as an ‘ultra-compact dwarf galaxy,’ which – as the name implies — are unusually dense and small galaxies. Additionally, it is the most luminous known galaxy of its type and one of the most massive, weighing 200 million times more than our Sun. But M60-UCD1 is jam-packed with an extraordinary number of stars, making it the densest galaxy in the nearby Universe that we know of. Stars in M60-UCD1 are thought to be 25 times closer together than the stars in our galaxy.

Quick and easy access to neighboring star systems (if you lived there) might be your first thought. But remember, space is big, no matter where you are.

“Traveling from one star to another would be a lot easier in M60-UCD1 than it is in our galaxy,” said Jay Strader of Michigan State University in Lansing, first author of a paper describing these results. “But it would still take hundreds of years using present technology.”

Ultra-compact dwarf galaxies were discovered about a decade ago. They are typically about only 100 light years across compared to the 1,000 light years or more than other dwarf galaxies. Our Milky Way galaxy is 120,000 light-years across.

This graph shows where M60-UCD1 fits in as far as luminosity and size. Credit: Strader et al.
This graph shows where M60-UCD1 fits in as far as luminosity and size. Credit: Strader et al.

Strader said that what makes M60-UCD1 so remarkable is that about half of its mass is found within a radius of only about 80 light years. This would make the density of stars about 15,000 times greater than found in Earth’s neighborhood in the Milky Way.

“Our discovery of M60-UCD1 lends support to the idea that ultra-compact dwarfs could be stripped-down version of more massive galaxies,” Strader wrote in a post on the Chandra blog. “The first reason is its mass: we estimate that it contains about 400 million stars, far more than observed for even massive star clusters, and much closer to the galaxy regime. We also observe that M60-UCD1 has two “parts”: an inner, even denser core embedded in a more diffuse field of stars. This structure is not expected for a star cluster, but it’s a natural outcome of the tidal stripping process that could produce an ultra-compact dwarf.”

And so, this UCD is providing astronomers with clues to how these types of galaxies fit into the galactic evolutionary chain.

Additionally, this galaxy appears to have a central black hole, as Chandra X-ray Observatory reveal the presence of an X-ray source sitting right at the center.

While supermassive black holes are known to be common in the most massive galaxies, it is unknown whether they occur in less massive galaxies like M60-UCD1, Strader said.

“Further observations of M60-UCD1 and other ultra-compact dwarfs could confirm a new, significant population of massive black holes,” Strader said. “These masses of these black holes would be notable: while most central black holes in galaxies have only a fraction of a percent of the mass of their host galaxies, in ultra-compact dwarfs the black holes could be a full 10% of the mass of the dwarf. This is because so many of the dwarf’s outer stars have been stripped away, essentially boosting the contribution of the unaffected central black hole to the total mass of the galaxy.”

M60-UCD1 is located near a massive elliptical galaxy NGC 4649, also called M60, about 60 million light years from Earth. The galaxy was discovered with NASA’s Hubble Space Telescope and follow-up observations were done with NASA’s Chandra X-ray Observatory, the Keck Observatory in Hawaii, and the Multiple Mirror Telescope in Arizona.

Here’s the paper describing the discovery and the galaxy.

Sources: Chandra website, Chandra blog

Our Galaxy’s Supermassive Black Hole is a Sloppy Eater

Like most galaxies, our Milky Way has a dark monster in its middle: an enormous black hole with the mass of 4 million Suns inexorably dragging in anything that comes near. But even at this scale, a supermassive black hole like Sgr A* doesn’t actually consume everything that it gets its gravitational claws on — thanks to the Chandra X-ray Observatory, we now know that our SMB is a sloppy eater and most of the material it pulls in gets spit right back out into space.

(Perhaps it should be called the Cookie Monster in the middle.*)

New Chandra images of supermassive black hole Sagittarius A*, located about 26,000 light-years from Earth, indicate that less than 1% of the gas initially within its gravitational grasp ever reaches the event horizon. Instead, much of the gas is ejected before it gets near the event horizon and has a chance to brighten in x-ray emissions.

The new findings are the result of one of the longest campaigns ever performed with Chandra, with observations made over 5 weeks’ time in 2012.

Read more: Chandra Stares Deep into the Heart of Sagittarius A*

“This new Chandra image is one of the coolest I’ve ever seen,” said study co-author Sera Markoff of the University of Amsterdam in the Netherlands. “We’re watching Sgr A* capture hot gas ejected by nearby stars, and funnel it in towards its event horizon.”

As it turns out, the wholesale ejection of gas is necessary for our resident supermassive black hole to capture any at all. It’s a physics trade-off.

“Most of the gas must be thrown out so that a small amount can reach the black hole”, said co-author Feng Yuan of Shanghai Astronomical Observatory in China. “Contrary to what some people think, black holes do not actually devour everything that’s pulled towards them. Sgr A* is apparently finding much of its food hard to swallow.”

X-ray image of Sgr A*
X-ray image of Sgr A*

If it seems odd that such a massive black hole would have problems slurping up gas, there are a couple of reasons for this.

One is pure Newtonian physics: to plunge over the event horizon, material captured — and subsequently accelerated — by a black hole must first lose heat and momentum. The ejection of the majority of matter allows this to occur.

The other is the nature of the environment in the black hole’s vicinity. The gas available to Sgr A* is very diffuse and super-hot, so it is hard for the black hole to capture and swallow it. Other more x-ray-bright black holes that power quasars and produce huge amounts of radiation have much cooler and denser gas reservoirs.

Illustration of gas cloud G2 approaching Sgr A* (ESO/MPE/M.Schartmann/J.Major)
Illustration of gas cloud G2 approaching Sgr A* (ESO/MPE/M.Schartmann/J.Major)

Located relatively nearby, Sgr A* offers scientists an unprecedented view of the feeding behaviors of such an exotic astronomical object. Currently a gas cloud several times the mass of Earth, first spotted in 2011, is moving closer and closer to Sgr A* and is expected to be ripped apart and partially consumed in the coming weeks. Astronomers are eagerly awaiting the results.

“Sgr A* is one of very few black holes close enough for us to actually witness this process,” said Q. Daniel Wang of the University of Massachusetts at Amherst, who led the study.

Watch Black Holes: Monsters of the Cosmos

Source: Chandra press release. Read the team’s paper here.

Image credits: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI


*Any resemblance of Sgr A* to an actual Muppet, real or fictitious, is purely coincidental.

Weekly Space Hangout – May. 3, 2013

Another busy episode of the Weekly Space Hangout, with more than a dozen space stories covered by a collection of space journalists. This week’s panel included Alan Boyle, Dr. Nicole Gugliucci, Amy Shira Teitel, David Dickinson, Dr. Matthew Francis, and Jason Major. Hosted by Fraser Cain. We discussed:

We record the Weekly Space Hangout every Friday at 12 pm Pacific / 3 pm Eastern. You can watch us live on Google+, Cosmoquest or listen after as part of the Astronomy Cast podcast feed (audio only).

NASA’s Great Observatories Provide a Sparkly New View of the Small Magellanic Cloud

This is just pretty! NASA’s Great Observatories — the Hubble Space Telescope, the Chandra X-Ray Observatory and the Spitzer Infrared Telescope — have combined forces to create this new image of the Small Magellanic Cloud. The SMC is one of the Milky Way’s closest galactic neighbors. Even though it is a small, or so-called dwarf galaxy, the SMC is so bright that it is visible to the unaided eye from the Southern Hemisphere and near the equator.

What did it take to create this image? Let’s take a look at the images from each of the observatories:

The Small Magellenic Cloud in X-Ray from the Chandra X-Ray Observatory. Credit: NASA.
The Small Magellenic Cloud in X-Ray from the Chandra X-Ray Observatory. Credit: NASA.
The Small Magellenic Cloud in infrared, from the Spitzer Infrared Telescope. Credit: NASA.
The Small Magellenic Cloud in infrared, from the Spitzer Infrared Telescope. Credit: NASA.
The Small Magellenic Cloud as seen in optical wavelengths from the Hubble Space Telescope. Credit: NASA.
The Small Magellenic Cloud as seen in optical wavelengths from the Hubble Space Telescope. Credit: NASA.

The various colors represent wavelengths of light across a broad spectrum. X-rays from NASA’s Chandra X-ray Observatory are shown in purple; visible-light from NASA’s Hubble Space Telescope is colored red, green and blue; and infrared observations from NASA’s Spitzer Space Telescope are also represented in red.

The three telescopes highlight different aspects of this lively stellar community. Winds and radiation from massive stars located in the central, disco-ball-like cluster of stars, called NGC 602a, have swept away surrounding material, clearing an opening in the star-forming cloud.

Find out more at this page from Chandra, and this one from JPL.

Book Review: Your Ticket to the Universe

Your Ticket to the Universe is full of images and graphics of astronomical wonders.
Your Ticket to the Universe is full of images and graphics of astronomical wonders.

Every once in a while an astronomy book comes out that combines stunning high-definition images from the world’s most advanced telescopes, comprehensive descriptions of cosmic objects that are both approachable and easy to understand (but not overly simplistic) and a gorgeous layout that makes every page spread visually exciting and enjoyable.

This is one of those books.

Your Ticket to the Universe: A Guide to Exploring the Cosmos is a wonderful astronomy book by Kimberly K. Arcand and Megan Watzke, media coordinator and press officer for NASA’s Chandra X-ray Observatory, respectively. Published by Smithsonian Books, it features 240 pages of gorgeous glossy images from space exploration missions, from the “backyard” of our own Solar System to the more exotic environments found throughout the Galaxy… and even beyond to the very edges of the visible Universe itself.

Find out how you can win a copy of this book here!

As members of the Chandra team, headquartered at the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, Kim and Megan have long had firsthand experience with incredible astronomical images — they previously designed and coordinated the internationally-acclaimed From Earth to the Universe and From Earth to the Solar System photo installation projects, which helped set up presentations of space exploration images in public locations around the world.

Your Ticket to the Universe features images from some of the most recent missions - like MSL!
Your Ticket to the Universe even features images from some of the most recent missions – like MSL!

Your Ticket to the Universe takes such impressive images — from telescopes and observatories like Hubble, Spitzer, SDO, Chandra, Cassini, GOES, VLT, and many others, as well as from talented photographers on Earth and in orbit aboard the ISS — and puts them right into your hands, along with in-depth descriptions that are comprehensive yet accessible to even the most casual fans of space exploration.

This is my favorite kind of astronomy book. Although I look at images like the ones in Your Ticket to the Universe online every day, there’s something special about having them physically in front of you in print — and well-written text that can be understood by everyone is crucial, in my opinion, as it means a book may very well become an inspiration to a whole new generation of scientists and explorers.

“The sky belongs to everyone. That’s the premise of this guidebook to the Universe. You don’t need a medical degree to know when you’re sick or a doctorate in literature to appreciate a novel. In the same spirit, even those of us who don’t have advanced degrees in astronomy can gain access to all the wonder and experience that the Universe has to offer.”

Kim K. Arcand holds a copy of her book during a presentation at the Skyscrapers Astronomical Society of Rhode Island
Author Kimberly K. Arcand holds a copy of her book during a presentation at the Skyscrapers Astronomical Society of Rhode Island

I’ve had the pleasure of meeting co-author Kimberly Arcand on several occasions — I attended high school with her husband — and her knowledge about astronomy imaging as well as her ability to present it in an understandable way is truly impressive, to say the least. She’s quite an enthusiastic ambassador for space exploration, and Your Ticket to the Universe only serves to further demonstrate that.

I highly recommend it for anyone who finds our Universe fascinating.

Your Ticket to the Universe will be available online starting April 2 at Smithsonian Books, or you can pre-order a copy at Barnes & Noble or on Don’t explore the cosmos without it!

Astronomers Find Ultimate Oxymoron: A Small Supermassive Black Hole

There’s jumbo shrimp and accurate rumors; now there’s even a mini supermassive black hole. Astronomers have identified the smallest supermassive black hole ever observed, and while it’s considered a shrimp as far as supermassive black holes go, this guy is still pretty big: the mass of the black hole in galaxy NGC 4178 is estimated to be about 200,000 times the mass of our Sun. But it was a surprise that this galaxy had a black hole at all.

Astronomers using the Chandra X-Ray Observatory in conjunction with other observatories took a look at NGC 4178, a late-type spiral galaxy located about 55 million light years from Earth. It does not contain a bright central concentration, or bulge, of stars in its center, and so it was thought that perhaps this galaxy was one of the few that didn’t harbor a black hole.

With using Chandra’s X-Ray vision, as well as infrared data the NASA’s Spitzer Space Telescope and radio data from the Very Large Array, Nathan Secrest, from George Mason University and his team identified a weak X-ray source at the center of the galaxy, and also saw varying brightness at infrared wavelengths, suggesting that a black hole was actually in the center of NGC 4178 and was pulling in material from its surroundings. The same data also suggested that light generated by this infalling material is heavily absorbed by gas and dust and was therefore surrounding a black hole.

They were able to estimate the size of the black hole by using the known relationship between the mass of a black hole and the amount of X-rays and radio waves it generates.

While this is the lowest mass supermassive black holes ever observed, astronomers admit this is probably near the extreme low-mass end of being in the “supermassive” range. And as the team pointed out in their paper, there is increasing evidence that several late-type galaxies do host supermassive black holes, and that a classical bulge is not a requirement for a supermassive black hole to form and grow.

Read the team’s paper.

Source: NASA

Astronomers Discover Milky Way’s Hot Halo

Artist’s illustration of a hot gas halo enveloping the Milky Way and Magellanic Clouds (NASA/CXC/M.Weiss; NASA/CXC/Ohio State/A.Gupta et al.)

Our galaxy — and the nearby Large and Small Magellanic Clouds as well — appears to be surrounded by an enormous halo of hot gas, several hundred times hotter than the surface of the Sun and with an equivalent mass of up to 60 billion Suns, suggesting that other galaxies may be similarly encompassed and providing a clue to the mystery of the galaxy’s missing baryons.

The findings were reported today by a research team using data from NASA’s Chandra X-ray Observatory.

In the artist’s rendering above our Milky Way galaxy is seen at the center of a cloud of hot gas. This cloud has been detected in measurements made with Chandra as well as with the European Space Agency’s XMM-Newton space observatory and Japan’s Suzaku satellite. The illustration shows it to extend outward over 300,000 light-years — and it may actually be even bigger than that.

While observing bright x-ray sources hundreds of millions of light-years distant, the researchers found that oxygen ions in the immediate vicinity of our galaxy were “selectively absorbing” some of the x-rays. They were then able to measure the temperature of the halo of gas responsible for the absorption.

The scientists determined the temperature of the halo is between 1 million and 2.5 million kelvins — a few hundred times hotter than the surface of the Sun.

But even with an estimated mass anywhere between 10 billion and 60 billion Suns, the density of the halo at that scale is still so low that any similar structure around other galaxies would escape detection. Still, the presence of such a large halo of hot gas, if confirmed, could reveal where the missing baryonic matter in our galaxy has been hiding — a mystery that’s been plaguing astronomers for over a decade.

Unrelated to dark matter or dark energy, the missing baryons issue was discovered when astronomers estimated the number of atoms and ions that would have been present in the Universe 10 billion years ago. But current measurements yield only about half as many as were present 10 billion years ago, meaning somehow nearly half the baryonic matter in the Universe has since disappeared.

Recent studies have proposed that the missing matter is tied up in the comic web — vast clouds and strands of gas and dust that surround and connect galaxies and galactic clusters. The findings announced today from Chandra support this, and suggest that the missing ions could be gathered around other galaxies in similarly hot halos.

Even though previous studies have indicated halos of warm gas existing around our galaxy as well as others, this new research shows a much hotter, much more massive halo than ever detected.

“Our work shows that, for reasonable values of parameters and with reasonable assumptions, the Chandra observations imply a huge reservoir of hot gas around the Milky Way,” said study co-author Smita Mathur of Ohio State University in Columbus. “It may extend for a few hundred thousand light-years around the Milky Way or it may extend farther into the surrounding local group of galaxies. Either way, its mass appears to be very large.”

Read the full news release from NASA here, and learn more about the Chandra mission here. (The team’s paper can be found on

Inset image: NASA’s Chandra spacecraft (NASA/CXC/NGST)

NOTE: the initial posting of this story mentioned that this halo could be dark matter. That was incorrect and not implied by the actual research, as dark matter is non-baryonic matter while the hot gas in the halo is baryonic — i.e., “normal” —  matter. Edited. – JM

Pulsar Sets New Speed Record

A pulsar may have been spotted racing through space at over 6 million miles per hour (9.65 million km/h), setting a new speed record for these curious cosmic objects. If observations are what they appear to be, astronomers will have to recalculate the incredible forces created by supernova explosions.

Seen in observations made with 3 different telescopes — NASA’s Chandra X-ray Observatory, ESA’s XMM-Newton, and the Parkes radio telescope in Australia — the x-ray-emitting object IGR J11014-6103 appears to be racing away from the remnants of a supernova in the constellation Carina, 30,000 light-years from Earth.

The comet-shaped object is thought to be a pulsar, the rapidly-spinning, superdense remains of a star. The facts that it’s dim in optical and infrared wavelengths and hasn’t changed in x-ray brightness between XMM-Newton observations in 2003 and Chandra measurements in 2011 support the claim.

IGR J11014’s comet-like shape may be the result of its breakneck speed through space as its pulsar wind nebula gets blown back by the high-energy bow shock created at the forefront of its passage.

Pulsar wind nebulae are the results of charged particles streaming out from the pulsar itself. The particles, traveling at nearly light-speed, are rapidly decelerated by the interstellar medium and create a visible shock wave. In the case of IGR J11014, the pulsar wind is formed into a “tail” by its bow shock — effectively a sonic boom in front of it.

Further observations will be needed to confirm that IGR J11014 is indeed a pulsar, especially considering that actual pulsations have not yet been detected. If it is a pulsar, and is really traveling at the record-breaking speeds it appears to be — between 5.4 and 6.5 million miles per hour, more than 12 times faster than the Sun travels around the center of the galaxy — a new model of supernova explosions may be required.

Read more on the Chandra news release here.

Image: X-ray: NASA/CXC/UC Berkeley/J.Tomsick et al & ESA/XMM-Newton, Optical: DSS; IR: 2MASS/UMass/IPAC-Caltech/NASA/NSF. Video: NASA/CXC/A. Hobart.