Are Rogue Black Holes Wandering the Universe?

Talk about a tough neighborhood! Even black holes aren’t welcome in galaxy CID-42, located about 4 billion light-years away from Earth. Astronomers using the Chandra X-Ray Observatory have found strong evidence that a massive black hole is being ejected from this galaxy, moving out at a speed of several million kilometers per hour. This phenomenon, known as a recoiled black hole, happens due to a gravitational wave “kick” from the merger of two black holes.

While this event is likely to be rare, it could mean that there could be giant black holes roaming undetected out in the vast spaces between galaxies.
Continue reading “Are Rogue Black Holes Wandering the Universe?”

Chandra Spots a Black Hole’s High-Speed Hurricane

[/caption]

Astronomers using NASA’s Chandra X-ray Observatory have reported record-breaking wind speeds coming from a stellar-mass black hole.

The “wind”, a high-speed stream of material that’s being drawn off a star orbiting the black hole and ejected back out into space, has been clocked at a staggering 20 million miles per hour — 3% the speed of light! That’s ten times faster than any such wind ever measured from a black hole of its size!

The black hole, dubbed IGR J17091-3624 (IGR J17091 for short), is located about 28,000 light-years away in the constellation Scorpius. It is part of a binary system, with a Sun-like star in orbit around it.

“This is like the cosmic equivalent of winds from a category five hurricane,” said Ashley King from the University of Michigan, lead author of the study. “We weren’t expecting to see such powerful winds from a black hole like this.”

IGR J17091 exhibits wind speeds akin to black holes many times its mass… such winds have only ever been measured coming from black holes millions or even billions of times more massive.

“It’s a surprise this small black hole is able to muster the wind speeds we typically only see in the giant black holes,” said co-author Jon M. Miller, also from the University of Michigan.

Illustration of Cygnus X-1, another stellar-mass black hole located 6070 ly away. (NASA/CXC/M.Weiss)

Stellar-mass black holes are formed from the gravitational collapse of stars about 20 to 25 times the mass of our Sun.

“This black hole is performing well above its weight class,” Miller added.

IGR J17091 is also surprising in that it seems to be expelling much more material from its accretion disk than it is capturing. Up to 95% of the disk material is being blown out into space by the high-speed wind which, unlike polar jets associated with black holes, blows in many different directions.

While jets of material have been previously observed in IGR J17091, they have not been seen at the same time as the high-speed winds. This supports the idea that winds can suppress the formation of jets.

Chandra observations made two months ago did not show evidence of the winds, meaning they can apparently turn on and off. The winds are thought to be powered by constant variations in the powerful magnetic fields surrounding the black hole.

The study was published in the Feb. 20 issue of The Astrophysical Journal Letters.

Illustration credit: NASA/CXC/M.Weiss. Source: Chandra Press Room.

Milky Way’s Supermassive Black Hole is Feasting on Asteroids

[/caption]

For the past several years, the Chandra telescope has detected X-ray flares occurring about once a day from the supermassive black hole at the center of the Milky Way Galaxy. These flares last a few hours with brightness ranging from a few times to nearly one hundred times that of the black hole’s regular output. What could be causing these unusual, mysterious flares? Scientists have determined that the black hole could be feasting hungrily on asteroids that come too close and vaporizing them, creating the flares. Basically, the black hole is eating asteroids and then belching out X-ray gas.

If confirmed, this result would mean that there is a huge, bustling cloud around the black hole containing hundreds of trillions of asteroids and comets.

“People have had doubts about whether asteroids could form at all in the harsh environment near a supermassive black hole,” said Kastytis Zubovas of the University of Leicester in the United Kingdom, and lead author of a new paper. “It’s exciting because our study suggests that a huge number of them are needed to produce these flares.”

The scientists say this really isn’t as far-fetched as it may sound, as it mirrors an event that regularly takes place in our Solar System: About every three days a comet is destroyed when it flies into the hot atmosphere of the Sun. Despite the significant differences in the two environments, the destruction rate of comets and asteroids by the Sun and the black hole at the center of our galaxy, called Sagittarius A*, or “Sgr A*” for short, may be similar.

These asteroids and comets have likely been ripped from their parent stars, and to create the flare the asteroids or comets have to be fairly large, at least 19 km (12 miles) wide.

The astronomers propose this scenario: An asteroid undergoes a close encounter with another object, such as a star or planet, and is thrown into an orbit headed towards Sgr A*. If the asteroid passes within about 100 million miles of the black hole, roughly the distance between the Earth and the Sun, it would be torn into pieces by the tidal forces from the black hole. These fragments then would be vaporized by friction as they pass through the hot, thin gas flowing onto Sgr A*, similar to a meteor heating up and glowing as it falls through Earth’s atmosphere. A flare is produced and the remains of the asteroid are swallowed eventually by the black hole.

“An asteroid’s orbit can change if it ventures too close to a star or planet near Sgr A*,” said co-author Sergei Nayakshin, also of the University of Leicester. “If it’s thrown toward the black hole, it’s doomed.”

The team says these results reasonably agree with models estimating of how many asteroids are likely to be in this region, assuming that the number around stars near Earth is similar to the number surrounding stars near the center of the Milky Way.

“As a reality check, we worked out that a few trillion asteroids should have been removed by the black hole over the 10-billion-year lifetime of the galaxy,” said co-author Sera Markoff of the University of Amsterdam in the Netherlands. “Only a small fraction of the total would have been consumed, so the supply of asteroids would hardly be depleted.”

This scenario would not be limited to asteroids and comets, however. Planets thrown into orbits too close to Sgr A* also could also be disrupted by tidal forces, although planets in the region are less common. And of course, if a planet was consumed, it would create an even larger flare; and this may have occurred about a century ago when Sgr A* brightened by about a factor of a million. Chandra and other X-ray missions have seen evidence of an X-ray “light echo” reflecting off nearby clouds, providing a measure of the brightness and timing of the flare.

“This would be a sudden end to the planet’s life, a much more dramatic fate than the planets in our solar system ever will experience,” Zubovas said.

Very long observations of Sgr A* will be made with Chandra later in 2012 that will give valuable new information about the frequency and brightness of flares and should help to test the model proposed here to explain them. The team said this work could improve understanding about the formation of asteroids and planets in the harsh environment of Sgr A*.

Paper: “Sgr A* flares: tidal disruption of asteroids and planets?”; K. Zubovas, S. Nayakshin, S. Markoff”

Sources: Chandra, RAS

Supernova G350 Kicks Up Some X-Ray Dust

[/caption]

Located some 14,700 light years from the Earth toward the center of our galaxy, a newly photographed supernova remnant cataloged as G350.1+0.3 is making astronomers scratch their heads. The star which created this unusual visage is suspected to have blown its top some 600 to 1,200 years ago. Although it would have been as bright as the event which created the “Crab”, chances are no one saw it due to the massive amounts of gas and dust at the Milky Way’s heart. Now NASA’s Chandra X-ray Observatory and the ESA’s XMM-Newton telescope has drawn back the curtain and we’re able to marvel at what happens when a supernova imparts a powerful X-ray “kick” to a neutron star!

Credit: X-ray: NASA/CXC/SAO/I.Lovchinsky et al, IR: NASA/JPL-Caltech
Photographic proof from Chandra and XMM-Newton are full of clues which give rise to the possibility that a compact object located in the influence of G350.1+0.3 may be the core region of a shattered star. Since it is off-centered from the X-ray emissions, it must have received a powerful blast of energy during the supernova event and has been moving along at a speed of 3 million miles per hour ever since. This information agrees with an “exceptionally high speed derived for the neutron star in Puppis A and provides new evidence that extremely powerful ‘kicks’ can be imparted to neutron stars from supernova explosions.”

As you look at the photo, you’ll notice one thing in particular… the irregular shape. The Chandra data in this image appears as gold while the infrared data from NASA’s Spitzer Space Telescope is colored light blue. According to the research team, this unusual configuration may have been caused by the stellar debris field imparting itself into the surrounding cold molecular gas.

These results appeared in the April 10, 2011 issue of The Astrophysical Journal. The scientists on this paper were Igor Lovchinsky and Patrick Slane (Harvard-Smithsonian Center for Astrophysics), Bryan Gaensler (University of Sydney, Australia), Jack Hughes (Rutgers University), Stephen Ng (McGill University), Jasmina Lazendic (Monash University Clayton, Australia), Joseph Gelfand (New York University, Abu Dhabi), and Crystal Brogan (National Radio Astronomy Observatory).

Original Story Source: NASA Chandra News Release.

X-rays Unwrap a Poky Little Pulsar

[/caption]

For the first time astronomers have located a pulsar – the super-dense, spinning remains of a star – nestled within the remnants of a supernova in the Small Magellanic Cloud. The image above, a composite of x-ray  and optical light data acquired by NASA’s Chandra Observatory and ESA’s XMM-Newton, shows the pulsar shining brightly on the right surrounded by the ejected outer layers of its former stellar life.

The optically-bright area on the left is a large star-forming region of dust and gas nearby SXP 1062.

A pulsar is a neutron star that emits high-energy beams of radiation from its magnetic poles. These poles are not always aligned with its axis of rotation, and so the beams swing through space as the neutron star spins. If the Earth happens to be in direct line with the beams at some point along their path, we see them as rapidly flashing radiation sources… sort of like a cosmic lighthouse on overdrive.

What’s unusual about this pulsar – called SXP 1062 – is its slow rate of rotation. Its beams spin around at a rate of about once every 18 minutes, which is downright poky for a pulsar, most of which spin several times a second.

X-ray image of SXP 1062

This makes SXP 1062 one of the slowest known pulsars discovered within the Small Magellanic Cloud, a dwarf galaxy cruising alongside our own Milky Way about 200,000 light-years distant.

The supernova that presumably created the pulsar and its surrounding remnant wrapping is estimated to have taken place between 10,000 and 40,000 years ago – relatively recently, by cosmic standards. To see a young pulsar spinning so slowly is extra unusual since younger pulsars have typically been observed to have rapid rotation rates. Understanding the cause of its leisurely pace will be the next goal for SXP 1062 researchers.

Read more about SXP 1062on the Chandra photo album page.

 

Image credit: X-ray & Optical: NASA/CXC/Univ.Potsdam/L.Oskinova et al.

A Four Cluster Pile-Up

[/caption]

Abell 2744, shown above in a composite of images from the Hubble Space Telescope, the ESO’s Very Large Telescope and NASA’s Chandra X-ray  Observatory, is one of the most complex and dramatic collisions ever seen between galaxy clusters.

X-ray image of Abell 2744

Dubbed “Pandora’s Cluster”, this is a region 5.9 million light-years across located 3.5 billion light-years away. Many different kinds of structures are found here, shown in the image as different colors. Data from Chandra are colored red, showing gas with temperatures in the millions of degrees. Dark matter is shown in blue based on data from Hubble, the European Southern Observatory’s VLT array and Japan’s Subaru telescope. Finally the optical images showing the individual galaxies have been added.

Even though there are many bright galaxies visible in the image, most of the mass in Pandora’s Cluster comes from the vast areas of dark matter and extremely hot gas. Researchers made the normally invisible dark matter “visible” by identifying its gravitational effects on light from distant galaxies. By carefully measuring the distortions in the light a map of the dark matter’s mass could be created.

Galaxy clusters are the largest known gravitationally-bound structures in the Universe, and Abell 2744 is where at least four clusters have collided together. The vast collision seems to have separated the gas from the dark matter and the galaxies themselves, creating strange effects which have never been seen together before. By studying the history of events like this astronomers hope to learn more about how dark matter behaves and how the different structures that make up the Universe interact with each other.

Check out this HD video tour of Pandora’s Cluster from the team at Chandra:

Read more on the Chandra web site or in the NASA news release.

Image credit: X-ray: NASA/CXC/ITA/INAF/J.Merten et al, Lensing: NASA/STScI; NAOJ/Subaru; ESO/VLT, Optical: NASA/STScI/R.Dupke.

___________________

Jason Major is a graphic designer, photo enthusiast and space blogger. Visit his website Lights in the Dark and follow him on Twitter @JPMajor or on Facebook for the most up-to-date astronomy awesomeness!

 

Nearby Galaxy Has Two Monster Black Holes

[/caption]

Why does this galaxy appear to be smiling? The answer might be because it has been holding a secret that astrophysicists have only now just uncovered: there are two — count ‘em – two gigantic black holes inside this nearby galaxy, named Markarian 739 (or NGC 3758), and both are very active. While massive black holes are common, only about one percent of them are considered as active and powerful – called active galactic nuclei (AGN). Binary AGN are rarer still: Markarian 739 is only the second identified within half a billion light-years from Earth.

Markarian 739 is actually a pair of merging galaxies. For decades, astronomers have known that the eastern nucleus of Markarian 739 contains a black hole that is actively accreting matter and generating an exceptional amount of energy. Now, data from the Swift satellite along with the Chandra X-ray Observatory Swift has revealed an AGN in the western half as well. This makes the galaxy one of the nearest and clearest cases of a binary AGN.

The galaxy is 425 million light-years away from Earth.

How did the second AGN remain hidden for so long? “Markarian 739 West shows no evidence of being an AGN in visible, ultraviolet and radio observations,” said Sylvain Veilleux, a professor of astronomy at University of Maryland in College Park , and a coauthor of a new paper published in Astrophysical Journal Letters. “This highlights the critical importance of high-resolution observations at high X-ray energies in locating binary AGN.”

Since 2004, the Burst Alert Telescope (BAT) aboard Swift has been mapping high-energy X-ray sources all around the sky. The survey is sensitive to AGN up to 650 million light-years away and has uncovered dozens of previously unrecognized systems.

Michael Koss, the lead author of this study, from NASA’s Goddard Space Flight Center and UMCP, did follow-up studies of the BAT mapping and he and his colleagues published a paper in 2010 that revealed that about a quarter of the Swift BAT AGN were either interacting or in close pairs, with perhaps 60 percent of them poised to merge in another billion years.

“If two galaxies collide and each possesses a supermassive black hole, there should be times when both black holes switch on as AGN,” said coauthor Richard Mushotzky, professor of astronomy at UMCP. “We weren’t seeing many double AGN, so we turned to Chandra for help.”

Swift’s BAT instrument is scanning one-tenth of the sky at any given moment, its X-ray survey growing more sensitive every year as its exposure increases. Where Swift’s BAT provided a wide-angle view, the X-ray telescope aboard the Chandra X-ray Observatory acted like a zoom lens and resolved details a hundred times smaller.

The distance separating the two black holes is about 11,000 light-years , or about a third of the distance separating the solar system from the center of our own galaxy. The dual AGN of Markarian 739 is the second-closest known, both in terms of distance from one another and distance from Earth. However, another galaxy known as NGC 6240 holds both records.

Source: Swift Telescope webpage

You can follow Universe Today senior editor Nancy Atkinson on Twitter: @Nancy_A. Follow Universe Today for the latest space and astronomy news on Twitter @universetoday and on Facebook.

Crab Nebula Erupts in a Superflare

[/caption]

From a NASA press release:

The famous Crab Nebula supernova remnant has erupted in an enormous flare five times more powerful than any flare previously seen from the object. On April 12, NASA’s Fermi Gamma-ray Space Telescope first detected the outburst, which lasted six days. Several other satellites also made observations, which has astonished astronomers by revealing unexpected changes in X-ray emission the Crab, once thought to be the steadiest high-energy source in the sky.

The nebula is the wreckage of an exploded star that emitted light which reached Earth in the year 1054. It is located 6,500 light-years away in the constellation Taurus. At the heart of an expanding gas cloud lies what is left of the original star’s core, a superdense neutron star that spins 30 times a second. With each rotation, the star swings intense beams of radiation toward Earth, creating the pulsed emission characteristic of spinning neutron stars (also known as pulsars).

Apart from these pulses, astrophysicists believed the Crab Nebula was a virtually constant source of high-energy radiation. But in January, scientists associated with several orbiting observatories, including NASA’s Fermi, Swift and Rossi X-ray Timing Explorer, reported long-term brightness changes at X-ray energies.

X-ray data from NASA's Fermi, RXTE, and Swift satellites and the European Space Agency's International Gamma-Ray Astrophysics Laboratory (INTEGRAL) confirm that the Crab Nebula's output has declined about 7 percent in two years at energies from 15,000 to 50,000 electron volts. They also show that the Crab has brightened or faded by as much as 3.5 percent a year since 1999. Fermi's Large Area Telescope (LAT) has detected powerful gamma-ray flares (magenta lines) as well. (Image credit: NASA's Goddard Space Flight Center)

“The Crab Nebula hosts high-energy variability that we’re only now fully appreciating,” said Rolf Buehler, a member of the Fermi Large Area Telescope (LAT) team at the Kavli Institute for Particle Astrophysics and Cosmology, a facility jointly located at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University.

Since 2009, Fermi and the Italian Space Agency’s AGILE satellite have detected several short-lived gamma-ray flares at energies greater than 100 million electron volts (eV) — hundreds of times higher than the nebula’s observed X-ray variations. For comparison, visible light has energies between 2 and 3 eV.

On April 12, Fermi’s LAT, and later AGILE, detected a flare that grew about 30 times more energetic than the nebula’s normal gamma-ray output and about five times more powerful than previous outbursts. On April 16, an even brighter flare erupted, but within a couple of days, the unusual activity completely faded out.

“These superflares are the most intense outbursts we’ve seen to date, and they are all extremely puzzling events,” said Alice Harding at NASA’s Goddard Space Flight Center in Greenbelt, Md. “We think they are caused by sudden rearrangements of the magnetic field not far from the neutron star, but exactly where that’s happening remains a mystery.”

The Crab’s high-energy emissions are thought to be the result of physical processes that tap into the neutron star’s rapid spin. Theorists generally agree the flares must arise within about one-third of a light-year from the neutron star, but efforts to locate them more precisely have proven unsuccessful so far.

Since September 2010, NASA’s Chandra X-ray Observatory routinely has monitored the nebula in an effort to identify X-ray emission associated with the outbursts. When Fermi scientists alerted astronomers to the onset of a new flare, Martin Weisskopf and Allyn Tennant at NASA’s Marshall Space Flight Center in Huntsville, Ala., triggered a set of pre-planned observations using Chandra.

It was also observed by NASA’s Rossi X-Ray Timing Explorer (RXTE) and Swift satellites and the European Space Agency’s International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The results confirm a real intensity decline of about 7 percent at energies between 15,000 to 50,000 eV over two years. They also show that the Crab has brightened and faded by as much as 3.5 percent a year since 1999.

“Thanks to the Fermi alert, we were fortunate that our planned observations actually occurred when the flares were brightest in gamma rays,” Weisskopf said. “Despite Chandra’s excellent resolution, we detected no obvious changes in the X-ray structures in the nebula and surrounding the pulsar that could be clearly associated with the flare.”

Scientists think the flares occur as the intense magnetic field near the pulsar undergoes sudden restructuring. Such changes can accelerate particles like electrons to velocities near the speed of light. As these high-speed electrons interact with the magnetic field, they emit gamma rays.

To account for the observed emission, scientists say the electrons must have energies 100 times greater than can be achieved in any particle accelerator on Earth. This makes them the highest-energy electrons known to be associated with any galactic source. Based on the rise and fall of gamma rays during the April outbursts, scientists estimate that the size of the emitting region must be comparable in size to the solar system.

What Triggers a Type Ia Supernova? Chandra Finds New Evidence

[/caption]

What makes a star go boom? A new look at Tycho’s supernova remnant by the Chandra X-ray telescope has supplied astronomers with previously unseen evidence for what could trigger specific type of supernova, a Type Ia supernova explosion. Astronomers have spotted what appears to be material that was blasted off a companion star to a white dwarf when it exploded, creating the supernova seen by Danish astronomer Tycho Brahe in 1572. There is also evidence that this material blocked the explosion debris, creating an “arc” and a “shadow” in the supernova remnant.

There are two main types of supernovae. One is where a massive star – much bigger than our sun — burns all its nuclear fuel and collapses in on itself, which ignites a supernova explosion. Type Ia supernovae, however, are different. Smaller stars eventually turn into white dwarfs at the end of their lives, becoming an ultra-dense ball of carbon and oxygen about the size of the Earth, with the mass of our Sun. In some instances, though, a white dwarf somehow ignites, creating an explosion so bright that it can be seen billions of light years away, across much of the Universe. But astronomers really haven’t understood what causes these explosions to start.

There are a couple of popular theories: one scenario for Type Ia supernovas involves the merger of two white dwarfs. In this case, no companion star or evidence for material blasted off a companion should exist. In the other theory, a white dwarf pulls material from a “normal,” or Sun-like, companion star until a thermonuclear explosion occurs.

Both scenarios may actually occur under different conditions, but the latest Chandra result from Tycho supports the latter one.

This is an artist's impression showing an explanation from scientists for the origin of an X-ray arc in Tycho's supernova remnant. Credit: NASA/CXC/M.Weiss

The new Chandra images show the famous leftovers of Tycho’s supernova, and reveal for the first time an arc of X-ray emission within the supernova remnant. The shape of the arc is different from any other feature seen in the remnant. This supports the conclusion that a shock wave created the arc when a white dwarf exploded and blew material off the surface of a nearby companion star.

In addition, this new study seems to show how resilient some stars can be, as the supernova explosion appears to have blasted very little material off the companion star. Previously, studies with optical telescopes have revealed a star within the remnant that is moving much more quickly than its neighbors, hinting that it could be the missing companion.

“It looks like this companion star was right next to an extremely powerful explosion and it survived relatively unscathed,” said Q. Daniel Wang of the University of Massachusetts in Amherst, a member of the research team whose paper will appear in the May 1st issue of The Astrophysical Journal. “Presumably it was also given a kick when the explosion occurred. Together with the orbital velocity, this kick makes the companion now travel rapidly across space.”

This image shows iron debris in Tycho's supernova remnant. The site of the supernova explosion is shown, as inferred from the motion of the possible companion to the exploded white dwarf. The position of material stripped off the companion star by the explosion, and forming an X-ray arc, is shown by the white dotted line. This structure is most easily seen in an image showing X-rays from the arc's shock wave. Finally, the arc has blocked debris from the explosion creating a "shadow" in the debris between the red dotted lines, extending from the arc to the edge of the remnant. Credit: NASA/CXC/Chinese Academy of Sciences/F. Lu et al.

Using the properties of the X-ray arc and the candidate stellar companion, the team determined the orbital period and separation between the two stars in the binary system before the explosion. The period was estimated to be about 5 days, and the separation was only about a millionth of a light-year, or less than a tenth the distance between the Sun and the Earth. In comparison, the remnant itself is about 20 light-years across.

Other details of the arc support the idea that it was blasted away from the companion star. For example, the X-ray emission of the remnant shows an apparent “shadow” next to the arc, consistent with the blocking of debris from the explosion by the expanding cone of material stripped from the companion.

“This stripped stellar material was the missing piece of the puzzle for arguing that Tycho’s supernova was triggered in a binary with a normal stellar companion,” said Fangjun Lu of the Institute of High Energy Physics, Chinese Academy of Sciences in Beijing. “We now seem to have found this piece.”

Because Type Ia supernova are all of similar brightness, they are used as a standard candle to measure the expansion of the Universe, and this new observation by Chandra has helped to answer at least part of the long-standing – and critical — question of what triggers these bright explosions.

Source: Chandra