What’s the Best Way to Sail From World to World? Electric Sails or Solar Sails?

In the past decade, thousands of planets have been discovered beyond our Solar System. This has had the effect of renewing interest in space exploration, which includes the possibility of sending spacecraft to explore exoplanets. Given the challenges involved, a number of advanced concepts are currently being explored, like the time-honored concept of a light sail (as exemplified by Breakthrough Starshot and similar proposals).

However, in more recent years, scientists have proposed a potentially more-effective concept known as the electric sail, where a sail composed of wire mesh generates electrical charges to deflect solar wind particles, thus generating momentum. In a recent study, two Harvard scientists compared and contrasted these methods to determine which would be more advantageous for different types of missions.

Continue reading “What’s the Best Way to Sail From World to World? Electric Sails or Solar Sails?”

Prototype of a Future Interstellar Probe was Just Tested on a Balloon

At the University of California, Santa Barbara, researchers with the UCSB Experimental Cosmology Group (ECG) are currently working on ways to achieve the dream of interstellar flight. Under the leadership of Professor Philip Lubin, the group has dedicated a considerable amount of effort towards the creation of an interstellar mission consisting of directed-energy light sail and a wafer-scale spacecraft (WSS) “wafercraft“.

If all goes well, this spacecraft will be able to reach relativistic speeds (a portion of the speed of light) and make it to the nearest star system (Proxima Centauri) within our lifetimes. Recently, the ECG achieved a major milestone by successfully testing a prototype version of their wafercraft (aka. the “StarChip“). This consisted of sending the prototype via balloon into the stratosphere to test its functionality and performance.

Continue reading “Prototype of a Future Interstellar Probe was Just Tested on a Balloon”

What Would be the Benefits of an Interstellar Probe?

On July 14th, 2015, the New Horizons mission made history when it became the first robotic spacecraft to conduct a flyby of Pluto. On December 31st, 2018, it made history again by being the first spacecraft to rendezvous with a Kuiper Belt Object (KBO) – Ultima Thule (2014 MU69). In addition, the Voyager 2 probe recently joined its sister probe (Voyager 1) in interstellar space.

Given these accomplishments, it is understandable that proposals for interstellar missions are once again being considered. But what would such a mission entail, and is it even worth it? Kelvin F. Long, the co-founder of the Initiative for Interstellar Studies (i4iS) and a major proponent of interstellar flight, recently published a paper that supports the idea of sending robotic missions to nearby star systems to conduct in-situ reconnaissance.

Continue reading “What Would be the Benefits of an Interstellar Probe?”

Exactly How We Would Send our First Laser-Powered Probe to Alpha Centauri

The dream of traveling to another star system, and maybe even finding populated worlds there, is one that has preoccupied humanity for many generations. But it was not until the era of space exploration that scientists have been able to investigate various methods for making an interstellar journey. While many theoretical designs have been proposed over the years, a lot of attention lately has been focused on laser-propelled interstellar probes.

The first conceptual design study, known as Project Dragonfly was hosted by the Initiative for Interstellar Studies (i4iS) in 2013. The concept called for the use of lasers to accelerate a light sail and spacecraft to 5% the speed of light, thus reaching Alpha Centauri in about a century. In a recent paper, one of the teams that took part in the design competition assessed the feasibility of their proposal for a lightsail and magnetic sail.

Continue reading “Exactly How We Would Send our First Laser-Powered Probe to Alpha Centauri”

There Could be Hundreds of Interstellar Asteroids and Comets in the Solar System Right Now That we Could Study

On October 19th, 2017, the first interstellar object – named 1I/2017 U1 (aka. ‘Oumuamua) – to be observed in our Solar System was detected. In the months that followed, multiple follow-up observations were conducted to gather more data on its composition, shape, and possible origins. Rather than dispel the mystery surrounding the true nature of ‘Oumuamua – is a comet or an asteroid? – these efforts have only managed to deepen it.

In a recent study, Harvard Professor Abraham Loeb and Shmuel Bialy – a postdoctoral researcher from the Smithsonian Center for Astrophysics (CfA) – addressed this mystery by suggesting that ‘Oumuamua may be an extra-terrestrial solar sail. Building on this, Loeb and Amir Siraj (a Harvard undergraduate student) conducted a new study that indicated that hundreds of “‘Oumuamua-like” objects could be detectable in our Solar System.

Continue reading “There Could be Hundreds of Interstellar Asteroids and Comets in the Solar System Right Now That we Could Study”

Could Oumuamua Be an Extra-Terrestrial Solar Sail?

On October 19th, 2017, the Panoramic Survey Telescope and Rapid Response System-1 (Pan-STARRS-1) in Hawaii announced the first-ever detection of an interstellar asteroid, named 1I/2017 U1 (aka. ‘Oumuamua). In the months that followed, multiple follow-up observations were conducted that allowed astronomers to get a better idea of its size and shape, while also revealing that it had the characteristics of both a comet and an asteroid.

Interestingly enough, there has also been some speculation that based on its shape, ‘Oumuamua might actually be an interstellar spacecraft (Breakthrough Listen even monitored it for signs of radio signals!). A new study by a pair of astronomers from the Harvard Smithsonian Center for Astrophysics (CfA) has taken it a step further, suggesting that ‘Oumuamua may actually be a light sail of extra-terrestrial origin.

Continue reading “Could Oumuamua Be an Extra-Terrestrial Solar Sail?”

Optical Rocket Boosts Electrons to Nearly the Speed of Light

A team of researchers from the University of Nebraska–Lincoln recently conducted an experiment where they were able to accelerate plasma electrons to close to the speed of light. This “optical rocket”, which pushed electrons at a force a trillion-trillion times greater than that generated by a conventional rocket, could have serious implications for everything from space travel to computing and nanotechnology.

Continue reading “Optical Rocket Boosts Electrons to Nearly the Speed of Light”

What Would a Camera on a Breakthrough Starshot Spacecraft See if it’s Going at High Velocity?

In April of 2016, Russian billionaire Yuri Milner announced the creation of Breakthrough Starshot. As part of his non-profit scientific organization (known as Breakthrough Initiatives), the purpose of Starshot was to design a lightsail nanocraft that would be capable of achieving speeds of up to 20% the speed of light and reaching the nearest star system – Alpha Centauri (aka. Rigel Kentaurus) – within our lifetimes.

At this speed – roughly 60,000 km/s (37,282 mps) – the probe would be able to reach Alpha Centauri in 20 years, where it could then capture images of the star and any planets orbiting it. But according to a recent article by Professor Bing Zhang, an astrophysicist from the University of Nevada, researchers could get all kinds of valuable data from Starshot and similar concepts long before they ever reached their destination.

The article appeared in The Conversation under the title “Observing the universe with a camera traveling near the speed of light“. The article was a follow-up to a study conducted by Prof. Zhang and Kunyang Li – a graduate student from the Center for Relativistic Astrophysics at the Georgia Institute of Technology – that appeared in The Astrophysical Journal (titled “Relativistic Astronomy“).

Prof. Albert Einstein at the 11th Josiah Willard Gibbs lecture at the meeting of the American Association for the Advancement of Science in 1934. Credit: AP Photo

To recap, Breakthrough Starshot seeks to leverage recent technological developments to mount an interstellar mission that will reach another star within a single generation. The spacecraft would consist of an ultra-light nanocraft and a lightsail, the latter of which would accelerated by a ground-based laser array up to speeds of hundreds of kilometers per second.

Such a system would allow the tiny spacecraft to conduct a flyby mission of Alpha Centauri in about 20 years after it is launched, which could then beam home images of possible planets and other scientific data (such as analysis of magnetic fields). Recently, Breakthrough Starshot held an “industry day” where they submitted a Request For Proposals (RFP) to potential bidders to build the laser sail.

According to Zhang, a lightsail-driven nanocraft traveling at a portion of the speed of light would also be a good way to test Einstein’s theory of Special Relativity.  Simply put, this law states that the speed of light in a vacuum is constant, regardless of the inertial reference frame or motion of the source. In short, such a spacecraft would be able to take advantage of the features of Special Relativity and provide a new mode to study astronomy.

Based on Einstein’s theory, different objects in different “rest frames” would have different measures of the lengths of space and time. In this sense, an object moving at relativistic speeds would view distant astronomical objects differently as light emissions from these objects would be distorted. Whereas objects in front of the spacecraft would have the wavelength of their light shortened, objects behind it would have them lengthened.

This diagram shows the difference between unshifted, redshifted and blueshifted targets. Credit: NASA

This phenomenon, known as the “Doppler Effect”, results in light being shifted towards the blue end (“blueshift”) or the red end (“redshift”) of the spectrum for approaching and retreating objects, respectively. In 1929, astronomer Edwin Hubble used redshift measurements to determine that distant galaxies were moving away from our own, thus demonstrating that the Universe was in a state of expansion.

Because of this expansion (known as the Hubble Expansion), much of the light in the Universe is redshifted and only measurable in difficult-to-observe infrared wavelengths. But for a camera moving at relativistic speeds, according to Prof. Zhang, this redshifted light would become bluer since the motion of the camera would counteract the effects of cosmic expansion.

This effect, known as “Doppler boosting”, would cause the faint light from the early Universe to be amplified and allow distant objects to be studied in more detail. In this respect, astronomers would be able to study some of the earliest objects in the known Universe, which would offer more clues as to how it evolved over time. As Prof. Zhang explained to Universe Today via email, this would allow for some unique opportunities to test Special Relativity:

“In the rest frame of the camera, the emission of the objects in the hemisphere of the camera motion is blue-shifted. For bright objects with detailed spectral observations from the ground, one can observe them in flight. By comparing their blue-shifted flux at a specific blue-shifted frequency with the flux of the corresponding (de-blueshifted) frequency on the ground, one can precisely test the Doppler boosting prediction in Special Relativity.”

Observed image of nearby galaxy M51 (left) and how the image would look through a camera moving at half the speed of light (right). Credit: Zhang & Li, 2018, The Astrophysical Journal, 854, 123, CC BY-ND

In addition, the frequency and intensity of light – and also the size of distant objects – would also change as far as the observer was concerned. In this respect, the camera would act as a lens and a wide-field camera, magnifying the amount of light it collects and letting astronomers observe more objects within the same field of view. By comparing the observations collected by the camera to those collected by a camera from the ground, astronomers could also test the probe’s Lorentz Factor.

This factor indicates how time, length, and relativistic mass change for an object while that object is moving, which is another prediction of Special Relativity. Last, but not least, Prof. Zhang indicates that probes traveling at relativistic speeds would not need to be sent to any specific destination in order to conduct these tests. As he explained:

“The concept of “relativistic astronomy” is that one does not really need to send the cameras to specific star systems. No need to aim (e.g. to Alpha Centauri system), no need to decelerate. As long as the signal can be transferred back to earth, one can learn a lot of things. Interesting targets include high-redshift galaxies, active galactic nuclei, gamma-ray bursts, and even electromagnetic counterparts of gravitational waves.”

However, there are some drawbacks to this proposal. For starters, the technology behind Starshot is all about accomplishing the dream of countless generations – i.e. reaching another star system (in this case, Alpha Centauri) – within a single generation.

And as Professor Abraham Loeb – the Frank B. Baird Jr. Professor of Science at Harvard University and the Chair and the Breakthrough Starshot Committee – told Universe Today via email, what Prof. Zhang is proposing can be accomplished by other means:

>“Indeed, there are benefits to having a camera move near the speed of light toward faint sources, such as the most distant dwarf galaxies in the early universe. But the cost of launching a camera to the required speed would be far greater than building the next generation of large telescopes which will provide us with a similar sensitivity. Similarly, the goal of testing special relativity can be accomplished at a much lower cost.”

Of course, it will be many years before a project like Starshot can be mounted, and many challenges need to be addressed in the meantime. But it is exciting to know that in meantime, scientific applications can be found for such a mission that go beyond exploration. In a few decades, when the mission begins to make the journey to Alpha Centauri, perhaps it will also be able to conduct tests on Special Relativity and other physical laws while in transit.

Further Reading: The Conversation, The Astrophysical Journal

Breakthrough Starshot is Now Looking for the Companies to Build its Laser-Powered Solar Sails to Other Stars

In 2015, Russian billionaire Yuri Milner established Breakthrough Initiatives, a non-profit organization dedicated to enhancing the search for extraterrestrial intelligence (SETI). In April of the following year, he and the organization be founded announced the creation of Breakthrough Starshot, a program to create a lightsail-driven “wafercraft” that would make the journey to the nearest star system – Proxima Centauri – within our lifetime.

In the latest development, on Wednesday May 23rd, Breakthrough Starshot held an “industry day” to outline their plans for developing the Starshot laser sail. During this event, the Starshot committee submitted a Request For Proposals (RFP) to potential bidders, outlining their specifications for the sail that will carry the wafercraft as it makes the journey to Proxima Centauri within our lifetimes.

As we have noted in several previous articles, Breakthrough Starshot calls for the creation of a gram-scale nanocraft being towed by a laser sail. This sail will be accelerated by an Earth-based laser array to a velocity of about 60,000 km/s (37,282 mps) – or 20% the speed of light (o.2 c). This concept builds upon the idea of a solar sail, a spacecraft that relies on solar wind to push itself through space.

An artist’s illustration of a light-sail powered by a radio beam (red) generated on the surface of a planet. Credit: M. Weiss/CfA

At this speed, the nanocraft would be able to reach the closest star system to our own – Proxima Centauri, located 4.246 light-years away – in just 20 years time. Since its inception, the team behind Breakthrough Starshot has invested considerable time and energy addressing the conceptual and engineering challenges such a mission would entail. And with this latest briefing, they are now looking to move the project from concept to reality.

In addition to being the Frank B. Baird, Jr. Professor of Science at Harvard University, Abraham Loeb is also the Chair of the Breakthrough Starshot Advisory Committee. As he explained to Universe Today via email:

“Starshot is an initiative to send a probe to the nearest star system at a fifth of the speed of light so that it will get there within a human lifetime of a couple of decades. The goal is to obtain photos of exo-planets like Proxima b, which is in the habitable zone of the nearest star Proxima Centauri, four light years away. The technology adopted for fulfilling this challenge uses a powerful (100 Giga-watt) laser beam pushing on a lightweight (1 gram) sail to which a lightweight electronics chip is attached (with a camera, navigation and communication devices). The related technology development is currently funded at $100M by Yuri Milner through the Breakthrough Foundation.”

In addition to outlining BI’s many efforts to find ETI – which include Breakthrough Listen, Breakthrough Message and Breakthrough Watch – the RFP focused on Starshot’s Objectives. As was stated in the RFP:

“The scope of this RFP addresses the Technology Development phase – to explore LightSail concepts, materials, fabrication and measurement methods, with accompanying analysis and simulation that creates advances toward a viable path to a scalable and ultimately deployable LightSail.”

A phased laser array, perhaps in the high desert of Chile, propels sails on their journey. Credit: Breakthrough Initiatives

As Loeb indicated, this RFP comes not long after another “industry day” that was related to the development of the technology of the laser – termed the “Photon Engine”. In contrast, this particular RFP was dedicated to the design of the laser sail itself, which will carry the nanocraft to Proxima Centauri.

“The Industry Day was intended to inform potential partners about the project and request for proposals (RFP) associated with research on the sail materials and design,” added Loeb. “Within the next few years we hope to demonstrate the feasibility of the required sail and laser technologies. The project will allocate funds to experimental teams who will conduct the related research and development work. ”

The RFP also addressed Starshot’s long-term goals and its schedule for research and development in the coming years. These include the investment in $100 million over the next five years to determine the feasibility of the laser and sail, to invest the value of the European Extremely Large Telescope (EELT) from year 6 to year 11 and build a low-power prototype for space testing, and invest the value of the Large Hardon Collider (LHC) over a 20 year period to develop the final spacecraft.

“The European Extremely Large Telescope (EELT) will cost on order of a billion [dollars] and the Large Hadron Collider cost was ten times higher,’ said Loeb. “These projects were mentioned to calibrate the scale of the cost for the future phases in the Starshot project, where the second phase will involve producing a demo system and the final step will involve the complete launch system.”

Artist’s impression of Proxima b, which was discovered using the Radial Velocity method. Credit: ESO/M. Kornmesser

The research and development schedule for the sail was also outlined, with three major phases identified over the next 5 years. Phase 1 (which was the subject of the RFP) would entail the development of concepts, models and subscale testing. Phase 2 would involve hardware validation in a laboratory setting, while Phase 3 would consist of field demonstrations.

With this latest “industry day” complete, Starshot is now open for submissions from industry partners looking to help them realize their vision. Step A proposals, which are to consist of a five-page summary, are due on June 22nd and will be assessed by Harry Atwater (the Chair of the Sail Subcommittee) as well as Kevin Parkin (head of Parkin Research), Jim Benford (muWave Sciences) and Pete Klupar (the Project Manager).

Step B proposals, which are to consist of a more detailed, fifteen-page summary, will be due on July 10th. From these, the finalists will be selected by Pete Worden, the Executive Director of Breakthrough Starshot. If all goes according to plan, the initiative hopes to launch the first lasersail-driven nanocraft in to Proxima Centauri in 30 years and see it arrive there in 50 years.

So if you’re an aerospace engineer, or someone who happens to run a private aerospace firm, be sure to get your proposals ready! To learn more about Starshot, the engineering challenges they are addressing, and their research, follow the links provided to the BI page. To see the slides and charts from the RFP, check out Starshot’s Solicitations page.

Further Reading: Centauri Dreams, Breakthrough Starshot

Pros and Cons of Various Methods of Interstellar Travel

It’s a staple of science fiction, and something many people have fantasized about at one time or another: the idea of sending out spaceships with colonists and transplanting the seed of humanity among the stars. Between discovering new worlds, becoming an interstellar species, and maybe even finding extra-terrestrial civilizations, the dream of  spreading beyond the Solar System is one that can’t become reality soon enough!

For decades, scientists have contemplated how humanity might one-day reach achieve this lofty goal. And the range of concepts they have come up with present a whole lot of pros and cons. These pros and cons were raised in a recent study by Martin Braddock, a member of the Mansfield and Sutton Astronomical Society, a Fellow of the Royal Society of Biology, and a Fellow of the Royal Astronomical Society. Continue reading “Pros and Cons of Various Methods of Interstellar Travel”