Want the Fastest Solar Sail? Drop it Into the Sun First

Swarm of laser-sail spacecraft leaving the solar system. Credit: Adrian Mann

In the coming decades, multiple space agencies plan to return astronauts to the Moon (or to send them there for the first time) and mount the first crewed missions to Mars. Between that and the explosive growth we are seeing in Low Earth Orbit (LEO), there is no doubt that we live in an era of renewed space exploration. It’s therefore understandable that old and new concepts for interstellar travel are also being considered these days.

Right now, a considerable focus is on light sails that generate their own propulsion by radiation pressure or are accelerated by lasers. These concepts present all kinds of technical and engineering challenges. Luckily, Coryn Bailer-Jones of the Max Planck Institute for Astronomy (MPIA) recently conducted a study where he argues for a “Sun Diver” light sail that will pick up all the speed it needs by diving close to the Sun.

Continue reading “Want the Fastest Solar Sail? Drop it Into the Sun First”

What’s the Best Way to Communicate With an Interstellar Probe When it’s Light-Years Away From Earth?

An artist's illustration of a light-sail powered by a radio beam (red) generated on the surface of a planet. The leakage from such beams as they sweep across the sky would appear as Fast Radio Bursts (FRBs), similar to the new population of sources that was discovered recently at cosmological distances. Credit: M. Weiss/CfA

It’s no secret that humanity is poised to embark on a renewed era of space exploration. In addition to new frontiers in astronomical and cosmological research, crewed missions are also planned for the coming decades that will send astronauts back to the Moon and to Mars for the first time. Looking even further, there are also ideas for interstellar missions like Breakthrough Starshot and Project Dragonfly and NASA’s Starlight.

These mission concepts entail pairing a nanocraft with a lightsail, which would then accelerated by a directed-energy array (lasers) to achieve a fraction of the speed of light (aka. relativistic velocity). Naturally, this raises a number of technical and engineering challenges, not the least of which is communications. In a recent study, a team of scientists sought to address that very issue and considered various methods that might be used.

Continue reading “What’s the Best Way to Communicate With an Interstellar Probe When it’s Light-Years Away From Earth?”

We Have the Technology to Retrieve a Sample From an Interstellar Object Like Oumuamua

Artist’s impression of the interstellar object, `Oumuamua, experiencing outgassing as it leaves our Solar System. Credit: ESA/Hubble, NASA, ESO, M. Kornmesser

On October 19th, 2017, astronomers were astounded to learn that an interstellar object (named ‘Oumuamua) flew by Earth on its way out of the Solar System. Years later, astronomers are still debating what this object was – a comet fragment, a hydrogen iceberg, or an extraterrestrial solar sail? What’s more, the arrival of 2I/Borisov two years later showed how interstellar objects (ISOs) regularly enter our Solar System (some even stay!)

It’s little wonder then why proposals are in place to design missions that could rendezvous with an interstellar object the next time one passes by. One such mission is Project Lyra, a concept proposed by researchers from the Initiative for Interstellar Studies (i4is). Recently, an international team led from the I4IS drafted a White Paper that was submitted to the 2023-2032 Planetary Science and Astrobiology Decadal Survey.

Continue reading “We Have the Technology to Retrieve a Sample From an Interstellar Object Like Oumuamua”

How Will we Receive Signals From Interstellar Probes, Like Starshot?

Credit: Breakthrough Initiatives

In a few decades, the Breakthrough Starshot initiative hopes to send a sailcraft to the neighboring system of Alpha Centauri. Using a lightsail and a directed energy (aka. laser) array, a tiny spacecraft could be accelerated to 20% the speed of light (0.2 c). This would allow Starshot to make the journey to Alpha Centauri and study any exoplanets there in just 20 years, thus fulfilling the dream of interstellar exploration within our lifetimes.

Naturally, this plan presents a number of engineering and logistical challenges, one of which involves the transmission of data back to Earth. In a recent study, Starshot Systems Director Dr. Kevin L.G. Parkin analyzes the possibility of using a laser to transmit data back to Earth. This method, argued Parkin, is the most effective way for humanity to get a glimpse of what lies beyond our Solar System.

Continue reading “How Will we Receive Signals From Interstellar Probes, Like Starshot?”

Riding the Wave of a Supernova to Go Interstellar

An artist's illustration of a light-sail powered by a radio beam (red) generated on the surface of a planet. The leakage from such beams as they sweep across the sky would appear as Fast Radio Bursts (FRBs), similar to the new population of sources that was discovered recently at cosmological distances. Credit: M. Weiss/CfA

When it comes to the challenges posed by interstellar travel, there are no easy answers. The distances are immense, the amount of energy needed to make the journey is tremendous, and the time scales involved are (no pun!) astronomical. But what if there was a way to travel between stars using ships that take advantage of natural phenomena to reach relativistic velocities (a fraction of the speed of light).

Already, scientists have identified situations where objects in our Universe are able to do this – including hypervelocity stars and meteors accelerated by supernovae explosions. Delving into this further, Harvard professors Manasvi Lingam and Abraham Loeb recently explored how interstellar spacecraft could harness the waves produced by a supernova explosion in the same way that sailing ships harness the wind.

Continue reading “Riding the Wave of a Supernova to Go Interstellar”

Of the Two Stars in Alpha Centauri, One is Probably More Habitable than the Other

Artist's impression of a hypothetical planet orbiting the star Alpha Centauri B, a member of the triple star system that is the closest to Earth. Credit: ESO

In the past, the number of known exoplanets has exploded, with 4093 confirmed detections so far (and another 4,727 candidates awaiting confirmation). With the discovery of so many planets that are dozens, hundreds, or even thousands of light years away, a great deal of attention has understandably been directed to our nearest stellar neighbors. Could planets be right next door, with the possibility of life being there as well?

While a potentially-habitable planet was recently discovered around Proxima Centauri (Proxima b), Alpha Centauri remains something of a question mark. But thanks to a recent study from the Georgia Institute of Technology (GIT), we might be getting closer to determining if this neighboring system supports life. In a twist, the study revealed that one of the stars in the binary system is more likely to be habitable than the other.

Continue reading “Of the Two Stars in Alpha Centauri, One is Probably More Habitable than the Other”

What’s the Best Way to Sail From World to World? Electric Sails or Solar Sails?

Swarm of laser-sail spacecraft leaving the solar system. Credit: Adrian Mann

In the past decade, thousands of planets have been discovered beyond our Solar System. This has had the effect of renewing interest in space exploration, which includes the possibility of sending spacecraft to explore exoplanets. Given the challenges involved, a number of advanced concepts are currently being explored, like the time-honored concept of a light sail (as exemplified by Breakthrough Starshot and similar proposals).

However, in more recent years, scientists have proposed a potentially more-effective concept known as the electric sail, where a sail composed of wire mesh generates electrical charges to deflect solar wind particles, thus generating momentum. In a recent study, two Harvard scientists compared and contrasted these methods to determine which would be more advantageous for different types of missions.

Continue reading “What’s the Best Way to Sail From World to World? Electric Sails or Solar Sails?”

Prototype of a Future Interstellar Probe was Just Tested on a Balloon

Credit: UCSB

At the University of California, Santa Barbara, researchers with the UCSB Experimental Cosmology Group (ECG) are currently working on ways to achieve the dream of interstellar flight. Under the leadership of Professor Philip Lubin, the group has dedicated a considerable amount of effort towards the creation of an interstellar mission consisting of directed-energy light sail and a wafer-scale spacecraft (WSS) “wafercraft“.

If all goes well, this spacecraft will be able to reach relativistic speeds (a portion of the speed of light) and make it to the nearest star system (Proxima Centauri) within our lifetimes. Recently, the ECG achieved a major milestone by successfully testing a prototype version of their wafercraft (aka. the “StarChip“). This consisted of sending the prototype via balloon into the stratosphere to test its functionality and performance.

Continue reading “Prototype of a Future Interstellar Probe was Just Tested on a Balloon”

What Would be the Benefits of an Interstellar Probe?

Artist's concept of the Bussard Ramjet, which would harness hydrogen from the interstellar medium to power its fusion engines. Credit: futurespacetransportation.weebly.com

On July 14th, 2015, the New Horizons mission made history when it became the first robotic spacecraft to conduct a flyby of Pluto. On December 31st, 2018, it made history again by being the first spacecraft to rendezvous with a Kuiper Belt Object (KBO) – Ultima Thule (2014 MU69). In addition, the Voyager 2 probe recently joined its sister probe (Voyager 1) in interstellar space.

Given these accomplishments, it is understandable that proposals for interstellar missions are once again being considered. But what would such a mission entail, and is it even worth it? Kelvin F. Long, the co-founder of the Initiative for Interstellar Studies (i4iS) and a major proponent of interstellar flight, recently published a paper that supports the idea of sending robotic missions to nearby star systems to conduct in-situ reconnaissance.

Continue reading “What Would be the Benefits of an Interstellar Probe?”

Exactly How We Would Send our First Laser-Powered Probe to Alpha Centauri

Artist's impression of the Dragonfly spacecraft concept. Credit and Copyright: David A Hardy (2015)

The dream of traveling to another star system, and maybe even finding populated worlds there, is one that has preoccupied humanity for many generations. But it was not until the era of space exploration that scientists have been able to investigate various methods for making an interstellar journey. While many theoretical designs have been proposed over the years, a lot of attention lately has been focused on laser-propelled interstellar probes.

The first conceptual design study, known as Project Dragonfly was hosted by the Initiative for Interstellar Studies (i4iS) in 2013. The concept called for the use of lasers to accelerate a light sail and spacecraft to 5% the speed of light, thus reaching Alpha Centauri in about a century. In a recent paper, one of the teams that took part in the design competition assessed the feasibility of their proposal for a lightsail and magnetic sail.

Continue reading “Exactly How We Would Send our First Laser-Powered Probe to Alpha Centauri”