New Calculations Show That an Interstellar Bussard Ramjet Drive Would Need a Magnetic Field Stretching 150 Million Kilometres

An artist's impression of a ramjet drive. Credit: NASA

In the 1960s, American physicist Robert W. Bussard proposed a radical idea for interstellar travel: a spacecraft that relied on powerful magnetic fields to harvest hydrogen directly from the interstellar medium. The high speed of this “ramjet” forces the hydrogen into a progressively constricted magnetic field until fusion occurs. The magnetic field then directs the resulting energy towards the rear of the spacecraft to generate propulsion.

As it’s come to be known, the Bussard Ramjet has since been popularized by hard science fiction writers like Poul Anderson, Larry Niven, Vernor Vinge, and science communicators like Carl Sagan. Unfortunately, a team of physicists recently analyzed the concept in more detail and concluded that Bussard’s idea is not practical. At a time when interstellar travel looks destined to become a real possibility, this analysis might seem like a wet blanket but is more of a reality check.

Continue reading “New Calculations Show That an Interstellar Bussard Ramjet Drive Would Need a Magnetic Field Stretching 150 Million Kilometres”

A Space Telescope With one job: Find Habitable Planets at Alpha Centauri

Artist's impression of a hypothetical planet orbiting the star Alpha Centauri B, a member of the triple star system that is the closest to Earth. Credit: ESO

Alpha Centauri, the nearest star system to our Sun, is like a treasure trove with many scientific discoveries just waiting to be found. Part of what makes it so compelling is that our efforts to detect extrasolar planets there have failed to yield any concrete results to date. While the study of exoplanets has progressed exponentially in recent years, with 4,575 confirmed planets in 3,392 systems in the Milky Way (and even neighboring galaxies), astronomers are still having difficulty determining if anyone is next door.

In the coming decades, Breakthrough Initiatives plans to send a mission there known as Starshot, a lightsail craft that could make the journey in 20 years. On Nov. 16th, Breakthrough Initiatives announced another project for detecting exoplanets next door. It’s called the Telescope for Orbit Locus Interferometric Monitoring of our Astronomical Neighbourhood (TOLIMAN), a space telescope dedicated to finding rocky planets orbiting in Alpha Centauri’s circumsolar habitable zone (aka. “Goldilocks Zone”).

Continue reading “A Space Telescope With one job: Find Habitable Planets at Alpha Centauri”

LightSail 2 Has Now Been in Space for 2 Years, and Should Last Even Longer Before Re-Entering the Atmosphere

Photo of LightSail 2's sail deployment. Credit: The Planetary Society
Photo of LightSail 2's sail deployment. Credit: The Planetary Society

The Planetary Society’s crowdfunded solar-sailing CubeSat, LightSail 2, launched on June 25th 2019, and two years later the mission is still going strong. A pioneering technology demonstration of solar sail capability, LightSail 2 uses the gentle push of photons from the Sun to maneuver and adjust its orbital trajectory. Within months of its launch, LightSail 2 had already been declared a success, breaking new ground and expanding the possibilities for future spacecraft propulsion systems. Since then, it’s gone on to test the limits of solar sailing in an ongoing extended mission.

Continue reading “LightSail 2 Has Now Been in Space for 2 Years, and Should Last Even Longer Before Re-Entering the Atmosphere”

Sending a Spacecraft to Another Star Will Require a Million Lasers Working Together

An artist's illustration of a light-sail powered by a radio beam (red) generated on the surface of a planet. The leakage from such beams as they sweep across the sky would appear as Fast Radio Bursts (FRBs), similar to the new population of sources that was discovered recently at cosmological distances. Credit: M. Weiss/CfA

In 2016, Russian-American billionaire Yuri Milner founded Breakthrough Initiatives, a non-profit organization dedicated to investigating some of the most enduring mysteries of the Universe. Chief among their scientific efforts is Breakthrough Starshot, a proof-of-concept prototype that combines a lightsail, a nanocraft, and directed energy (aka. laser) propulsion to create a spacecraft capable of reaching the nearest star (Alpha Centauri) in our lifetimes.

Naturally, this presents all sorts of technical and engineering challenges, not the least of which is the amount of power needed to accelerate the spacecraft to relativistic speeds (a fraction of the speed of light). Luckily, scientists from the Australian National University (ANU) recently came up with a design for a directed-energy array made up of millions of individual lasers positioned across the Earth’s surface.

Continue reading “Sending a Spacecraft to Another Star Will Require a Million Lasers Working Together”

There Should be About 7 Interstellar Objects Passing Through the Inner Solar System Every Year

A Hubble image of Comet 2IBorisov from October 2019. Image Credit: By NASA, ESA, and D. Jewitt (UCLA) - https://imgsrc.hubblesite.org/hvi/uploads/image_file/image_attachment/31897/STSCI-H-p1953a-f-1106x1106.png, Public Domain, https://commons.wikimedia.org/w/index.php?curid=83146132

In October 19th, 2017, the first interstellar object ever detected flew past Earth on its way out of the Solar System. Less than two years later, a second object was detected, an easily-identified interstellar comet designated as 2I/Borisov. The appearance of these two objects verified earlier theoretical work that concluded that interstellar objects (ISOs) regularly enter our Solar System.

The question of how often this happens has been the subject of considerable research since then. According to a new study led by researchers from the Initiative for Interstellar Studies (i4is), roughly 7 ISOs enter our Solar System every year and follow predictable orbits while they are here. This research could allow us to send a spacecraft to rendezvous with one of these objects in the near future.

Continue reading “There Should be About 7 Interstellar Objects Passing Through the Inner Solar System Every Year”

A Review of “Extraterrestrial” by Prof. Avi Loeb

Credit: Houghton Mifflin Harcourt

On October 19th, 2017, astronomers from the Haleakala Observatory in Hawaii announced the first-ever detection of an interstellar object in our Solar System. In honor of the observatory that first spotted it, this object (designated 1I/2017 U1) was officially named ‘Oumuamua by the IAU – a Hawaiian term loosely translated as “Scout” (or, “a messenger from afar arriving first.”)

Multiple follow-up observations were made as ‘Oumuamua left our Solar System and countless research studies resulted. For the most part, these studies addressed the mystery of what ‘Oumuamua truly was: a comet, an asteroid, or something else entirely? Into this debate, Dr. Shmuel Bialy and Prof. Avi Loeb of the Harvard Institute for Theory and Computation (ITC) argued that ‘Oumuamua could have been an extraterrestrial probe!

Having spent the past few years presenting this controversial theory before the scientific and astronomical community, Prof. Loeb has since shared the story of how he came to it in his new book, Extraterrestrial: The First Sign of Intelligent Life Beyond Earth. The book is a seminal read, addresses the mystery of ‘Oumuamua, and (most importantly) urges readers to take seriously the possibility that an extraterrestrial encounter took place

Continue reading “A Review of “Extraterrestrial” by Prof. Avi Loeb”

Want the Fastest Solar Sail? Drop it Into the Sun First

Swarm of laser-sail spacecraft leaving the solar system. Credit: Adrian Mann

In the coming decades, multiple space agencies plan to return astronauts to the Moon (or to send them there for the first time) and mount the first crewed missions to Mars. Between that and the explosive growth we are seeing in Low Earth Orbit (LEO), there is no doubt that we live in an era of renewed space exploration. It’s therefore understandable that old and new concepts for interstellar travel are also being considered these days.

Right now, a considerable focus is on light sails that generate their own propulsion by radiation pressure or are accelerated by lasers. These concepts present all kinds of technical and engineering challenges. Luckily, Coryn Bailer-Jones of the Max Planck Institute for Astronomy (MPIA) recently conducted a study where he argues for a “Sun Diver” light sail that will pick up all the speed it needs by diving close to the Sun.

Continue reading “Want the Fastest Solar Sail? Drop it Into the Sun First”

What’s the Best Way to Communicate With an Interstellar Probe When it’s Light-Years Away From Earth?

An artist's illustration of a light-sail powered by a radio beam (red) generated on the surface of a planet. The leakage from such beams as they sweep across the sky would appear as Fast Radio Bursts (FRBs), similar to the new population of sources that was discovered recently at cosmological distances. Credit: M. Weiss/CfA

It’s no secret that humanity is poised to embark on a renewed era of space exploration. In addition to new frontiers in astronomical and cosmological research, crewed missions are also planned for the coming decades that will send astronauts back to the Moon and to Mars for the first time. Looking even further, there are also ideas for interstellar missions like Breakthrough Starshot and Project Dragonfly and NASA’s Starlight.

These mission concepts entail pairing a nanocraft with a lightsail, which would then accelerated by a directed-energy array (lasers) to achieve a fraction of the speed of light (aka. relativistic velocity). Naturally, this raises a number of technical and engineering challenges, not the least of which is communications. In a recent study, a team of scientists sought to address that very issue and considered various methods that might be used.

Continue reading “What’s the Best Way to Communicate With an Interstellar Probe When it’s Light-Years Away From Earth?”

We Have the Technology to Retrieve a Sample From an Interstellar Object Like Oumuamua

Artist’s impression of the interstellar object, `Oumuamua, experiencing outgassing as it leaves our Solar System. Credit: ESA/Hubble, NASA, ESO, M. Kornmesser

On October 19th, 2017, astronomers were astounded to learn that an interstellar object (named ‘Oumuamua) flew by Earth on its way out of the Solar System. Years later, astronomers are still debating what this object was – a comet fragment, a hydrogen iceberg, or an extraterrestrial solar sail? What’s more, the arrival of 2I/Borisov two years later showed how interstellar objects (ISOs) regularly enter our Solar System (some even stay!)

It’s little wonder then why proposals are in place to design missions that could rendezvous with an interstellar object the next time one passes by. One such mission is Project Lyra, a concept proposed by researchers from the Initiative for Interstellar Studies (i4is). Recently, an international team led from the I4IS drafted a White Paper that was submitted to the 2023-2032 Planetary Science and Astrobiology Decadal Survey.

Continue reading “We Have the Technology to Retrieve a Sample From an Interstellar Object Like Oumuamua”

How Will we Receive Signals From Interstellar Probes, Like Starshot?

Credit: Breakthrough Initiatives

In a few decades, the Breakthrough Starshot initiative hopes to send a sailcraft to the neighboring system of Alpha Centauri. Using a lightsail and a directed energy (aka. laser) array, a tiny spacecraft could be accelerated to 20% the speed of light (0.2 c). This would allow Starshot to make the journey to Alpha Centauri and study any exoplanets there in just 20 years, thus fulfilling the dream of interstellar exploration within our lifetimes.

Naturally, this plan presents a number of engineering and logistical challenges, one of which involves the transmission of data back to Earth. In a recent study, Starshot Systems Director Dr. Kevin L.G. Parkin analyzes the possibility of using a laser to transmit data back to Earth. This method, argued Parkin, is the most effective way for humanity to get a glimpse of what lies beyond our Solar System.

Continue reading “How Will we Receive Signals From Interstellar Probes, Like Starshot?”