Shouldn’t We Fix the Earth First?

I seem like a pretty calm and collected guy, but if you want to see me go on an epic rant, all you have to do is ask me some variation on the question: “why should we bother exploring space when we’ve got problems to fix here on Earth.”

I see this question all the time. All the time, in forums, comments on videos, and from people in audiences.

I think the question is ridiculous on many levels, and I’ve got a bunch of reasons why, but allow me to explain them here.

Before I do, however, I want you to understand that I believe that we human beings are indeed messing up the environment. We’re wiping out species faster than any natural disaster in the history of planet Earth. We’re performing a dangerous experiment on the climate of the planet, increasing temperatures worldwide, with devastating consequences, for both ecosystems and human civilization.

Credit: USFS Gila National Forest (CC BY-SA 2.0)
Credit: USFS Gila National Forest (CC BY-SA 2.0)

Unless we get this under control, and there’s no reason to believe we will, we’re going to raise temperatures to levels unseen in millions of years.

There are islands of plastic garbage in the oceans, collected into huge toxic rafts by the currents. Colonies of bees are dying through pesticides and habitat loss.

We’re even polluting the space around the Earth with debris that might tear apart future space missions.

I believe the science, and the science says we’re making a mess.

The first thing is that this whole question is a false dilemma fallacy. Why do we have to choose between space exploration and saving the planet? Why can’t we do both?

NASA’s Orion spacecraft. Credit: NASA
NASA’s Orion spacecraft. Credit: NASA

The world spent nearly $750 billion on cigarettes in 2014. NASA’s total budget is less than $20 billion, and Elon Musk thinks he can start sending colonists to Mars for less than $10 billion.

How about the whole world stops smoking, and we spend $20 billion on colonizing Mars and the other $730 billion on renewable fuels and cleaning up our negative impact on the environment, reducing poverty and giving people access to clean water?

Americans spend $27 billion on takeout pizza. Don’t get me wrong, pizza’s great, but I’d be willing to forego pizza if it meant a vibrant and healthy industry of space exploration.

Gambling, lawn care, hood ornaments, weapons of war. Humans spend a lot of money on a lot of things that could be redirected towards both space exploration and reducing our environmental impact.

Number two, it might turn out that space exploration is the best way to save the Earth. I totally agree with Blue Origin’s Jeff Bezos when he says that we already know that Earth is the best place in the Solar System. Let’s keep it that way.

Mars might be a fascinating place to visit and an adventure to colonize, but I want to swim in rivers, climb mountains, walk in forests, watch birds, sail in the ocean.

But the way we’re using up the natural environment will take away from all that. As Bezos says, we should move all the heavy industry off Earth and up into space. Use solar collectors to gather power, mine asteroids for their raw materials. Keep Earth as pristine as possible.

Asteroid mining concept. Credit: NASA/Denise Watt
Asteroid mining concept. Credit: NASA/Denise Watt

We won’t know how to do that unless we actually go into space and learn how to survive and run that industry, from space.

Number three, it might be that we’ve already crossed the point of no return. There’s a great science fiction story by Spider Robinson called “In the Olden Days”. It’s about how modern society turned its back on technology, and lost the ability to ever recover.

Humanity used up the entire technology ladder that nature put in front of us; the chunks of iron just sitting on the ground, the oil bubbling out of the Earth, the coal that was easily accessible. Now it takes an offshore drilling rig to get at the oil.

These resources took the Earth millions and even billions of years to accumulate for us to use, and transcend. When the cockroaches evolve intelligence and opposable thumbs, they won’t have those easily accessible resources to jumpstart their own space exploration program.

Number four, as Elon Musk says, we have to protect the cradle of consciousness. Until we find proof otherwise, we have to assume that the Earth is the only place in the Universe that evolved intelligent life.

And until the alien overlords show up and say, “don’t worry humans, we’ve got this,” we have to assume that the responsibility for seeding the life with intelligence rests on us. And we’re one asteroid strike or nuclear apocalypse away from snuffing that out.

I don’t entirely agree that Mars is the best place to do it, but we should at least have another party going on somewhere.

NASA astronaut Ed White during a spacewalk June 3, 1965. In his hand, the Gemini 4 astronaut carries a Hand Held Self Maneuvering Unit (HHSMU) to help him maneuver in microgravity. Credit: NASA
NASA astronaut Ed White during a spacewalk June 3, 1965. In his hand, the Gemini 4 astronaut carries a Hand Held Self Maneuvering Unit (HHSMU) to help him maneuver in microgravity. Credit: NASA

And number five, it’ll be fun. Humans need adventure. We need great challenges to push us to become the best versions of ourselves. We climb mountains because they’re there.

Ask anyone who’s built their own house or tried their hand at homesteading. It’s a tremendous amount of work, but it’s also rewarding in ways that buying stuff just isn’t.

The next time someone uses that argument on you, I hope this gives you some ammunition.

Phew, now I’ll get off my soapbox. Next week, I’m sure we’ll return to poop jokes, obscure science fiction references with a smattering of space science.

New Shepard Defies The Odds And Sticks Landing

Blue Origin successfully conducted an in-flight test of the New Shepard crew escape system on Wednesday. A live webcast featured stunning views of the crew capsule blasting away from the rocket booster 45 seconds into the flight with a two-second burn, and then parachuting safely back down to the ground. “We’re speechless right now and absolutely rightfully so,” said launch commentator Ariane Cornell.

Adding to the excitement, the rocket booster unexpectedly also survived the test, returning intact and making a successful vertical landing back at Blue Origin’s West Texas facility. So, yes, we were wrong about it ending in ‘fiery destruction.’ Blue Origin founder Jeff Bezos had said computer simulations showed a minimal chance the booster could survive the stresses of “70,000 pounds of off-axis force delivered by searing hot exhaust,” from the capsule escape motor, and then successfully return and land vertically as it’s done previously.

Bezos was pumped about the outcome, tweeting “That is one hell of a booster,” and included this Vine video of the event:

This is the fifth launch and landing of this rocket, the fourth made just this year. The successful landing of the booster means the intact rocket will find a place of honor – perhaps in a museum or even as a lawn ornament at Blue Origin, as SpaceX did.

Here’s the webcast:

This is the fifth launch and landing of this rocket, the fourth made just this year. The successful landing of the booster means the intact rocket will find a place of honor – perhaps in a museum or even as a lawn ornament at Blue Origin, as SpaceX did.

The escape system is designed to safely separate the New Shepherd crew capsule from the rocket booster in the event of an anomaly during flight, protecting a future crew. The abort system performed as expected, as about 45 seconds after liftoff, the escape motor ignited underneath the crew capsule. The motor burned for two seconds and shot the capsule up and away from the rocket booster. After a bit of tumbling – which would have given any occupants inside a fairly wild ride –the capsule’s parachutes deployed, allowing it to land safely. It will be interesting to hear followup on the tumbling from Blue Origin’s engineers, to see how unexpected that might be.

Cornel said this was a nominal test, providing an “exhilarating but safe ride.”

Screen capture of New Shepard booster touching down. Credit: Blue Origin.
Screen capture of New Shepard booster touching down. Credit: Blue Origin.

Once it was obvious the booster survived the blast from the escape system, it was fun and nail-biting to watch the booster reach the edge of space and then begin its descent. It used a series of braking maneuvers then just 8 minutes after launch as it approached the ground –still vertical — its BE-3 engine turned on and the landing legs deployed. The booster – looking only a little worse for wear — touched down gently.

Cornell said both the capsule and the booster will be retired, earning another turtle stencil.

Blue Origin stencils a tortoise on their vehicles after each successful flight. The tortoise is part of the company's Coat of Arms. Credit: Blue Origin.
Blue Origin stencils a tortoise on their vehicles after each successful flight. The tortoise is part of the company’s Coat of Arms. Credit: Blue Origin.

Blue Origin hopes to launch paying passengers into suborbital space by 2018 and today’s successful test means the company is on track to make it so.

Today’s successful test flight won praise from many in the industry. Eric Stallmer, presdient of the Commercial Spaceflight Federation congratulated the Blue Origin team and said, “Today’s fifth successful flight proved the New Shepard’s most critical safety features, innovative escape system technologies, and overall robustness of their system. It’s an exciting time to see these fantastic technological advancements and to witness the power of commercial industry.”

Screen capture of the New Shepard just before and after the abort motor ignition 45 seconds into the flight. Credit: Blue Origin/John Gardi.
Screen capture of the New Shepard just before and after the abort motor ignition 45 seconds into the flight. Credit: Blue Origin/John Gardi.

Odds Are Blue Origin Launch Test Will End In Fiery Destruction: Watch Live

The last time an in-flight escape system test for a crew capsule took place was during the Apollo program, in 1966. Now, you can watch live as Blue Origin tests the escape system for their New Shepard rocket on Wednesday, October 5, 2016 at 10:45 a.m. ET. The test was originally planned for today (Tuesday) but was postponed because of inclement weather.

You can watch live here:

As founder Jeff Bezos described the test, “Our next flight is going to be dramatic, no matter how it ends.” If all goes well, the crew capsule (empty, this time) should land rather gently. The likely end for the rocket booster, however, will be its destruction in a ball of flames.

Dramatic, indeed.

The New Shepard launching from its facility in West Texas. Image: Blue Origin
The New Shepard rocket launching from its facility in West Texas. Image: Blue Origin

Although the New Shepard has already launched successfully four times since November 2015, this fifth flight will test the system to protect future passengers from any anomaly during launch. Unlike the Apollo escape system that used an escape “tower” motor located on top of the capsule to ‘pull’ the crew cabin away from a failing booster, New Shepard’s escape system is mounted underneath the capsule, to ‘push’ the capsule away from a potentially exploding booster.

As the video below from Blue Origin explains, “Like the airbag in your car, this full envelope capsule escape system is always there if needed.” Bezos also described the test in an email:

About 45 seconds after liftoff at about 16,000 feet, we’ll intentionally command escape. Redundant separation systems will sever the crew capsule from the booster at the same time we ignite the escape motor. The escape motor will vector thrust to steer the capsule to the side, out of the booster’s path. The high acceleration portion of the escape lasts less than two seconds, but by then the capsule will be hundreds of feet away and diverging quickly. It will traverse twice through transonic velocities – the most difficult control region – during the acceleration burn and subsequent deceleration. The capsule will then coast, stabilized by reaction control thrusters, until it starts descending. Its three drogue parachutes will deploy near the top of its flight path, followed shortly thereafter by main parachutes.

While SpaceX successfully tested their escape system in May 2015, it wasn’t an in-flight test. The Crew Dragon spacecraft abort system was launched off a specially built platform at Cape Canaveral Air Force Station’s Space Launch Complex 40 in Florida. The engines fired for about six seconds, instantly producing about 15,000 pounds of thrust each and lifting the spacecraft out over the Atlantic Ocean and parachuting safely into the water.

Bezos said that while they’d really like to retire this New Shepard booster and put it in a museum, that’s probably not a possibility.

New Shepard comes in for a landing with drag brakes and landing gear deployed. Image: Blue Origin.
New Shepard comes in for a landing with drag brakes and landing gear deployed. Image: Blue Origin.

“It’s the first ever rocket booster to fly above the Karman line into space and then land vertically upon the Earth,” he said. “But the booster was never designed to survive an in-flight escape. The capsule escape motor will slam the booster with 70,000 pounds of off-axis force delivered by searing hot exhaust. The aerodynamic shape of the vehicle quickly changes from leading with the capsule to leading with the ring fin, and this all happens at maximum dynamic pressure.”

Monte Carlo simulations show there’s some chance the booster can survive those stresses and land vertically as it’s done previously. But probably not. There will still be propellant on board and if it lands hard, as expected, Bezos said “its impact with the desert floor will be most impressive.”

You can access the live feed on Blue Origin’s website.

Blue Origin Goes Big With New Glenn Rocket

Space exploration is becoming a lucrative domain for private aerospace companies (aka. the NewSpace industry). With opportunities for launch and resupply services growing, costs dwindling, and the cancellation of the Space Shuttle Program, private companies have been stepping up in recent years to provide their own launch vehicles and services to fill the gap.

Take Jeff Bezos, for example. Back in 2000, the founder of Amazon.com created Blue Origin to fulfill his lifelong dream of colonizing space. For years, Bezos and the company he founded have been working to produce their own fleet of reusable rockets. And as of the morning of Monday, Sept. 12th, he unveiled their newest and heaviest rocket – the New Glenn.

Much like SpaceX, Blue Origin has been committed to the creation of reusable rocket technology. This was made clear with the development of the New Shepard suborbital rocket, which was unveiled in 2006. Named in honor of the first American astronaut to go into space (Alan Shepard), this rocket made its first flight in April of 2015 and has had an impressive record, nailing four out of five soft landings in the space of just over a year.

New Shepard comes in for a landing with drag brakes and landing gear deployed. Image: Blue Origin.
New Shepard comes in for a landing with drag brakes and landing gear deployed. Credit: Blue Origin.

With the New Glenn – named in honor of astronaut John Glenn, the first American astronaut to orbit the Earth – the company now intends to take the next step, offering launch services beyond Low-Earth Orbit (LEO) and for crewed missions. As Bezos said during the press conference:

“New Glenn is designed to launch commercial satellites and to fly humans into space. The three-stage variant-with its high specific impulse hydrogen upper stage—is capable of flying demanding beyond-LEO missions.”

According to Bezos, Blue Origin will have both a two-stage and three-stage variant of the rocket. Whereas the two-stage will provide heavier lift capacity to LEO, the three-stage will be able to reach further, and will the company’s go-to when sending crewed missions into space. Work on the rocket began back in 2012, and the company hopes to make their first launch prior to 2020.

As Bezos said during the unveiling, this rocket carries on in the same tradition that inspired the creation of the New Shepard:

“Building, flying, landing, and re-flying New Shepard has taught us so much about how to design for practical, operable reusability. And New Glenn incorporates all of those learnings. Named in honor of John Glenn, the first American to orbit Earth, New Glenn is 23 feet in diameter and lifts off with 3.85 million pounds of thrust from seven BE-4 engines. Burning liquefied natural gas and liquid oxygen, these are the same BE-4 engines that will power United Launch Alliance’s new Vulcan rocket.”

A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-7 mission for the U.S. Air Force launches from Cape Canaveral Air Force Station, Fl, on July 23, 2015. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Delta IV rocket launching from Cape Canaveral Air Force Station, Fl, on July 23rd, 2015. Credit: Ken Kremer/kenkremer.com

The rocket will have a sea-level thrust of 1.746 million kg (3.85 million lbs), placing it ahead of the Delta IV Heavywhich has a sea-level thrust of about 900,000 kg (2 million lbs) – but behind the 2.268 million kg (5 million lbs) of the Falcon Heavy. Both variants will be powered by BE-4 engines, which are also manufactured by Blue Origin. The third-stage also employs a single vacuum-optimized BE-3 engine that burns liquid hydrogen and liquid oxygen.

However, the most interesting facet of the New Glenn is the fact that it will be reusable, with its first stage providing braking thrust and deployable legs (similar to the Falcon 9). In creating a heavy lift rocket that employs a retrievable first-stage, Blue Origin has signaled its intent to give SpaceX a run for its money when it comes to the development of reusable rocket technology.

It is also likely to raise the company’s profile, which has so far been limited to conducting sub-orbital research for NASA and dabbling in the space-tourism industry. But once the New Glenn is up and running, it is likely to begin securing contracts to provide resupply services the ISS, as well as contracts with companies and research institutions to place satellites in orbit.

The Falcon Heavy, once operational, will be the most powerful rocket in the world. Credit: spacex.com
The Falcon Heavy, once operational, will be the most powerful rocket in the world. Credit: spacex.com

According to The Verge, Bezos also hinted that his company has another project in mind – called the New Armstrong. While no details have been given just yet, the name of this rocket is a clear allusion to the Moon Landing, and hints that the company may have designs on possible moon missions in the coming decades.

This is an exciting time for the NewSpace industry. In the coming months, SpaceX is expected to conduct the first launch of the Falcon Heavy, which will be the most powerful rocket built in the US since the retirement of the Apollo program’s Saturn V launcher. And if they keep to their current schedule, Blue Origin will be following this in a few years time with the launch of the largest rocket of the post-Apollo era.

Big rockets and big lift capacities can mean only thing: big things lie ahead of us!

Further Reading: ArsTechnica, The Verge, Blue Origin

Bezos Is Building A House For His Big Brother

Blue Origin and its founder Jeff Bezos do a little one-upmanship on the old saying, “go big or go home.” With the groundbreaking of their new orbital vehicle manufacturing complex, they are going big AND going home. The new facility will be located near Kennedy Space Center in Florida and will house Blue Origin’s orbital launch vehicle, which Bezos has sometimes referred to as “Very Big Brother.” The new facility has a planned grand opening of December 2017.

Site preparation for Blue Origin's new orbital vehicle manufacturing complex in Florida. Credit: Blue Origin.
Site preparation for Blue Origin’s new orbital vehicle manufacturing complex in Florida. Credit: Blue Origin.

Blue Origin announced the plans for the complex in September 2015, and bulldozers started clearing ground this week (June 28, 2016). The facility will be where Blue Origin manufactures, processes, integrates and tests its rockets.

“It’s exciting to see the bulldozers in action,” Bezos wrote in an email update. “We’re clearing the way for the production of a reusable fleet of orbital vehicles that we will launch and land, again and again.”

Bezos said the 750,000 square foot (70,000 sq. meter) building will be “custom-built from the ground up” and will enable “large scale friction stir welding and automated composite processing equipment,” among other things.

The entire launch vehicle will be manufactured in this new facility except for the engines, the BE-4 — which Blue Origin says will be flight qualified by 2017 — and are currently produced in Blue Origin’s Kent, Washington facility. But they plan to build a new, larger engine production facility to accommodate their projected need for higher production rates, and they will conduct a site selection process for that facility later this year.

Another artist concept of Blue Origin's orbital vehicle manufacturing complex in Florida. Credit: Blue Origin.
Another artist concept of Blue Origin’s orbital vehicle manufacturing complex in Florida. Credit: Blue Origin.

Another little one-upmanship: Blue Origin’s new facility will best SpaceX’s main factory, which is about 550,000 square feet (51,000 sq. meters). SpaceX’s Hawthorne, California building was originally used by Northrup Aircraft to build 747 fuselages (although, SpaceX’s total campus of buildings in Hawthorne is over 1.6 million square feet.)

Very Big Brother (VBB) will get an official name at some point, but it will be a vertical takeoff, vertical landing (VTVL) system, like Blue Origin’s smaller suborbital New Shepard rocket. The plan is to have VBB’s lower stage be reusable and the upper stage be expendable.

For launches, Blue Origin will share Cape Canaveral Air Force Station’s Space Launch Complex 36 with Google Lunar X PRIZE team Moon Express (MoonEx).

The New Shepard launching from its facility in West Texas. Image: Blue Origin
The New Shepard rocket launching from its facility in West Texas. Image: Blue Origin

Weekly Space Hangout – June 24, 2016: Dr. James Green

Host: Fraser Cain (@fcain)

Special Guest:
Dr. James Green is the NASA Director of Planetary Science.

Guests:

Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg)
Dave Dickinson (www.astroguyz.com / @astroguyz)
Kimberly Cartier ( KimberlyCartier.org / @AstroKimCartier )

Their stories this week:

Evidence for volcanic history on Mars

Impact of Brexit on UK science uncertain

FRIPON: A New All-Sky Meteor Network

A Solstice Full Moon

Water on (under) Pluto???

Blue Origin conducts fourth launch, test

We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can also join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+!

Blue Origin Will Shoot Itself In The Foot On Purpose

New Shepard's crew capsule is seen descending with its parachutes deployed. The capsule's landing is cushioned by firing rockets after the parachutes have done their job. Image: Blue Origin

Blue Origin, the builder of the New Shepard re-usable rocket, has announced plans for the fourth flight of the rocket. With a recent successful launch and landing in their pocket, the company is anticipating another similar result. But this time, something will be done differently.

This time around, New Shepard will be launched and landed normally, but the crew capsule will be tested with an intentionally failed parachute. Blue Origin is promising an “exciting demonstration,” and in an email said they will be “demonstrating our ability to safely handle that failure scenario.”

Though no date has yet been set for this gimped-parachute demonstration, we are looking forward to it.

In previous tests, the crew capsule performed maneuvers that characterized its aerodynamics and reduced what are called ‘model uncertainties.’ Greater predictability is what these test flights are designed to achieve. Obviously, too many question marks are not good.

As Jeff Bezos, head of Blue Origin, said in an email, “One of the fundamental tenets of Blue Origin is that the safest vehicle is one that is robust and well understood. Each successive mission affords us the opportunity to learn and improve our vehicles and their modeling.”

The company also shared news of the construction of additional test cells at its facility in West Texas. These cells were announced in October, and now one of the cells has been commissioned. This cell “supports the development of the pre-burner start and ignition sequence timing” according to Bezos.

A new test cell has been commissioned at the Blue Origin facility in Texas. Image: Blue Origin
A new test cell has been commissioned at the Blue Origin facility in Texas. Image: Blue Origin

Bezos also touted the benefits of privately-funded endeavours, saying “…one of the many benefits of a privately funded engine development is that we can make and implement decisions quickly. We made the decision to build these two new test cells as a team in a 10 minute discussion.” He added, “Less than three weeks later we were pouring concrete and now we have an operating pressure fed test cell 7 months later.”

It’s clear that privately-funded initiatives can have more flexibility than governmental initiatives. They don’t face the same budgetary wrangling that organizations like NASA do. But, they don’t command the same resources that NASA does.

Companies like Blue Origin an SpaceX are very innovative and are leading the way in reusable rockets. If Blue Origin can make the crew capsule survivable in a failed parachute scenario, as the next test aims to do, then commercial space flight will benefit. Private trips to space, which are one of Blue Origin’s goal, will also become more and more attainable.

The New Shepard launching from its facility in West Texas. Image: Blue Origin
The New Shepard launching from its facility in West Texas. Image: Blue Origin

Weekly Space Hangout – Apr. 8, 2016: Space News Roundup

Host: Fraser Cain (@fcain)

Guests:

Kimberly Cartier (@AstroKimCartier )
Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg )
Dave Dickinson (www.astroguyz.com / @astroguyz)

Their stories this week:

Blue Origin, take three! (And a SpaceX launch today)

Japanese X-ray satellite

NASA Announces new planet hunting instrument

Weekend Occultations

US Navy Resumes Celestial Navigation Training

What Hit Jupiter?

We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we’ve started a new system. Instead of adding all of the stories to the spreadsheet each week, we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can also join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+!

Weekly Space Hangout – Mar. 11, 2016: Dr. Sarah M. Milkovich

Host: Fraser Cain (@fcain)

Guests: Dr. Sarah M. Milkovich, Planetary Geologist and current Science Systems Engineer at JPL working on Mars 2020 Rover. She has also worked on MRO (HiRISE), MSL, Cassini (UVIS), and Mars Phoenix Mission.

Guests:
Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg)
Dave Dickinson (www.astroguyz.com / @astroguyz)
Paul Sutter (pmsutter.com / @PaulMattSutter)
Alessondra Springmann (@sondy)

Their stories this week:

InSight lives.. But at what cost?

Blue Origin targeting 2018 debut of space tourism

Amazing Views of This Weeks Eclipse

New planets around old stars?

Drilling into Chicxulub crater

We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we’ve started a new system. Instead of adding all of the stories to the spreadsheet each week, we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can also join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+!

Weekly Space Hangout – Jan. 29, 2016: Largest Solar System, Future Missions, and Remembering Our Lost Astronauts

Host: Fraser Cain (@fcain)

Guests:
Carolyn Collins Petersen (thespacewriter.com / space.about.com / @spacewriter )
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Kimberly Cartier (@AstroKimCartier )
Dave Dickinson (www.astroguyz.com / @astroguyz)
Jolene Creighton (fromquarkstoquasars.com / @futurism)
Paul Sutter (pmsutter.com / @PaulMattSutter)

Continue reading “Weekly Space Hangout – Jan. 29, 2016: Largest Solar System, Future Missions, and Remembering Our Lost Astronauts”