Masten Space is Building a Lunar Lander for NASA. Also, They Just Filed for Bankruptcy

Artist's rendering of the Masten XL-1 lander. Credit: Masten Space Systems

If you’re a fan of the commercial space industry (aka. NewSpace), then the name Masten Space Systems is sure to ring a bell. For years, this California-based aerospace company has been developing delivery systems to accommodate payloads to the Moon, Mars, and beyond. This included Xoie, the lander concept that won the $1 million Northrop Grumman Lunar X-Prize in 2009, their Xombie and Xodiac reusable terrestrial landers, and the in-Flight Alumina Spray Technique (FAST) that would allow lunar landers to create their own landing pads.

But perhaps their biggest feat was the Xelene Lunar Lander (XL-1) that they developed in partnership with the NASA Lunar CATALYST program. This lander was one of several robotic systems enlisted by NASA to deliver cargo to the Moon in support of the Artemis Program. This included the Masten-1 mission, which was scheduled to land a payload Moon’s southern polar region in 2023. The company was scheduled to make a second delivery (Masten-2) by 2024, one year before the first Artemis astronauts arrived. But according to a statement issued on July 28th, the company has filed for Chapter 11 and is bankrupt!

Continue reading “Masten Space is Building a Lunar Lander for NASA. Also, They Just Filed for Bankruptcy”

Engineers are Testing how VIPER can Handle the Gnarliest Lunar Terrain

An illustration of NASA's VIPER lunar rover. It'll explore the Moon's south pole and map water resources. Image Credit: NASA Ames/Daniel Rutter

NASA’s getting ready to send a VIPER to the Moon. Not the popular sports car but a rugged vehicle that can handle whatever the lunar surface can throw at it. The Volatiles Investigating Polar Exploration Rover (VIPER) was put through its paces recently at the Glenn Research Center in Cleveland. The prototype drove up test slopes and clambered over boulders and craters. It also made its way through a simulated quicksand type of soil in a “sink tank”. It passed with flying colors, and showed engineers how it will handle similar conditions on the Moon.

Continue reading “Engineers are Testing how VIPER can Handle the Gnarliest Lunar Terrain”

NASA Says It’s Satisfied With Rehearsal for SLS Moon Rocket Launch

SLS and Orion at launch pad
A full moon looms over NASA's Space Launch System and its Orion capsule at Kennedy Space Center's Launch Complex 39B. (NASA Photo / Ben Smegelsky)

NASA says it’s finished with having to do full-scale dress rehearsals for the first liftoff of its moon-bound Space Launch System rocket. But it’s not finished with having to make fixes.

“At this point we’ve determined that we’ve successfully completed the evaluations and the work that we intended to complete for the dress rehearsal,” Thomas Whitmeyer, NASA’s deputy associate administrator for common exploration systems development, told reporters today.

NASA’s assessment came after a dress rehearsal that reached its climax on June 20 with the loading of the 322-foot-tall rocket’s supercooled propellant tanks. The rehearsal, which followed some less-than-fully-successful trial runs in April, marked a milestone for launch preparations because it was the first time that the team at Kennedy Space Center in Florida had fully loaded all of the tanks and proceeded into the terminal launch countdown.

Continue reading “NASA Says It’s Satisfied With Rehearsal for SLS Moon Rocket Launch”

Engineers Design an Electrical Microgrid for a Lunar Base

Illustration of NASA astronauts on the lunar South Pole. Credit: NASA

For seventy years, Albuquerque-based Sandia National Laboratories has been developing electrical microgrids that increase community resilience and ensure energy security. Applications include the Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS), designed to support military bases abroad, and independent power systems for hospitals and regions where electrical grids are at risk of being compromised by natural disasters (like hurricanes, flooding, and earthquakes).

In the coming years, Artemis Program, NASA will be sending astronauts back to the Moon for the first time since the Apollo Era and establish a “sustained program of lunar exploration.” To ensure that astronauts have the necessary power to maintain their habitats and support operations on the surface, NASA has partnered with Sandia to develop microgrids for the Moon! This technology could also support future endeavors, like mining, fuel processing, and other activities on the Moon.

Continue reading “Engineers Design an Electrical Microgrid for a Lunar Base”

A CubeSat is Flying to the Moon to Make Sure Lunar Gateway’s Orbit is Actually Stable

Before this decade is over, NASA will send astronauts to the Moon for the first time since the Apollo Era. As part of the Artemis Program, NASA also plans to establish the infrastructure that will allow for a “sustained program of lunar exploration.” A key part of this is the Lunar Gateway, an orbiting space station that will facilitate regular trips to and from the lunar surface. In addition to being a docking point for ships going to and from Earth, the station will also allow for long-duration missions to Mars.

The Gateway will have what is known in orbital mechanics as a “near rectilinear halo orbit” (NRHO), meaning it will orbit the Moon from pole to pole. To test the long-term stability of this orbit, NASA will be sending the Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) to the Moon by the end of May. This nine-month CubeSat mission will be the first spacecraft to test this orbit and demonstrate its benefits for the Gateway.

Continue reading “A CubeSat is Flying to the Moon to Make Sure Lunar Gateway’s Orbit is Actually Stable”

Artemis 1 Probably won't Launch Until August

The Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, the right-hand center aft booster segment for Artemis I is stacked on the mobile launcher for the Space Launch System (SLS) on Jan. 7, 2021. Photo credit: NASA/Kim Shiflett

On March 17th, the Artemis I mission rolled out of the Vehicle Assembly Building (VLB) and was transferred to Launch Complex 39B at the NASA Kennedy Space Center in Florida. This was the first time that a fully-stacked Space Launch System (SLS) and Orion spacecraft were brought to the launchpad in preparation for a “wet dress rehearsal.” To mark the occasion, NASA released a video of the event that featured a new song by Pearl Jam’s Eddie Vedder (“Invincible”).

Unfortunately, technical issues forced ground controllers to scrub the dress rehearsal repeatedly and return the Artemis I to the VLB on April 26th. This was followed by reports that these issues were addressed and that Artemis I rocket would return to LC 39B by early- to mid-June. Meanwhile, an official NASA statement (issued on Thursday, May 8th) says that the official launch of the mission is not likely to take place until August at the earliest.

Continue reading “Artemis 1 Probably won't Launch Until August”

What’s the Best Way to Build Landing Pads on the Moon?

An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018
An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018

In the near future, NASA, the European Space Agency (ESA), China, and Roscosmos all mount crewed missions to the Moon. This will constitute the first time astronauts have walked on the lunar surface since the Apollo Era. But unlike the “Race to the Moon,” the goal of these programs is not to get their first and leave only a few experiments and landers behind (i.e., “footprints and flags” missions) but to establish a sustained human presence on the lunar surface. This means creating habitats on the surface and in orbit that can be used by rotating crews.

While NASA and other space agencies intend to leverage local resources as much as possible – a process known as In-Situ Resource Utilization (ISRU) – creating lunar bases will still require lots of materials and machinery to be shipped from Earth. In a recent study, Philip Metzger and Greg Autry reviewed the cost and energy consumption of building landing pads on the lunar surface. After considering various construction methods, they determined that a combination of additive manufacturing and polymer infusion was the most efficient and cost-effective means.

Continue reading “What’s the Best Way to Build Landing Pads on the Moon?”

Canada's Criminal Laws now Extend to Earth Orbit and the Moon

Illustration of NASA astronauts on the lunar South Pole. Credit: NASA

In this decade and the next, astronauts will be going to space like never before. This will include missions beyond Low Earth Orbit (LEO) for the first time in over fifty years, renewed missions to the Moon, and crewed missions to Mars. Beyond that, new space stations will be deployed to replace the aging International Space Station (ISS), and there are even plans to establish permanent human outposts on the Lunar and Martian surfaces.

In anticipation of humanity’s growing presence in space, and all that it will entail, legal scholars and authorities worldwide are looking to extend Earth’s laws into space. In a recent decision, the Canadian government introduced legislation extending Canada’s criminal code to the Moon. The amendment was part of the Budget Implementation Act (a 443-page document) tabled and passed late last month in Canada’s House of Commons.

Continue reading “Canada's Criminal Laws now Extend to Earth Orbit and the Moon”

Lunar Samples Have Been in the Deep Freeze for 50 Years. NASA Finally has the Right Technology to Study Them Properly

Curators handling lunar rocks take extreme care to keep these materials from contamination as they work with them in cold boxes using gloves and protective gear. This frozen Apollo 17 sample is being studied in a nitrogen-purged glove box at NASA Johnson Space Flight Center. Courtesy NASA/Robert Markowitz.
Curators handling lunar rocks take extreme care to keep these materials from contamination as they work with them in cold boxes using gloves and protective gear. This frozen Apollo 17 sample is being studied in a nitrogen-purged glove box at NASA Johnson Space Flight Center. Courtesy NASA/Robert Markowitz.

Ever wonder what happened to all those collections of rocks and dust the Apollo astronauts brought back from the Moon? Some of those lunar samples were studied right away. Others made their way into a few museums and science centers and the desks of world leaders. Still others landed in storage at NASA Johnson’s Space Center in Houston. Some got stored at room temperature while others were put into a deep freeze. The idea was to preserve any traces of gases or water or possibly organic materials on them. Now, some of these lunar samples are at the NASA Goddard Space Flight Center in Maryland, where they’re under examination for the first time in 50 years using new techniques not available during the Apollo years.

Continue reading “Lunar Samples Have Been in the Deep Freeze for 50 Years. NASA Finally has the Right Technology to Study Them Properly”

NASA Announces the Winners of its Second Payload Challenge!

Lunar exploration has advanced considerably in the last two decades, with more countries sending robotic orbiters, landers, and rovers to the surface than ever before. These missions have taught us much about the Moon’s geological evolution, composition, environment, and resources. In a few years, this information will prove vital as NASA sends the first astronauts to the Moon since the Apollo Era (as part of the Artemis Program). They will be followed by many more crewed missions, which will eventually lead to the creation of lunar bases.

Alas, there is still a lot that we still need to know before regular, long-duration missions to the Moon can be conducted. To help fill in the gaps in our knowledge, HeroX launched the “Honey, I Shrunk the NASA Payload, the Sequel” Challenge in September 2020. With up to $800,000 in prizes, this competition sought innovative miniature payload designs that could collect information about the lunar environment and its potential resources. The competition’s winners were announced today during the Lunar Surface Innovation Consortium Spring meeting.

Continue reading “NASA Announces the Winners of its Second Payload Challenge!”