Dune-Inspired Stillsuits Could Allow Astronauts to Recycle Their Urine Into Water

A Fremen from Dune wearing a stillsuit. Credit: DALL-E generated image

If history has taught us one thing, it is that science fiction often gives way to science fact. Consider the Star Trek communicator and the rise of flip phones in the late 1990s and early 2000s, or how 2001: A Space Odyssey predicted orbiting space stations and reusable space planes – like the International Space Station (ISS) and the Space Shuttle. And who can forget Jules Verne’s classic, From the Earth to the Moon, and how it anticipated that humans would one day walk on the Moon? Almost a century later, this dream would be realized with the Apollo Program.

The latest comes from Cornell University, where a team of researchers has developed a novel in-suit urine collection and filtration system inspired by the suits the Fremen wore in Frank Herbert’s Dune. Once integrated into NASA’s standard spacesuit—the Extravehicular Mobility Unit (EMU)—this system has the potential to provide astronauts with additional water while reducing the risk of hygiene-related medical events. In short, the stillsuit technology has the potential to enable longer-duration missions on the surface of the Moon, Mars, and orbit.

Continue reading “Dune-Inspired Stillsuits Could Allow Astronauts to Recycle Their Urine Into Water”

A Moon Base Will Need a Transport System

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA

Through the Artemis Program, NASA will return astronauts to the lunar surface for the first time since Apollo 17 landed in 1972. Beyond this historic mission, scheduled for September 2026, NASA plans to establish the infrastructure that will enable annual missions to the Moon, eventually leading to a permanent human presence there. As we addressed in a previous article, this will lead to a huge demand for cargo delivery systems that meet the logistical, scientific, and technical requirements of crews engaged in exploration.

Beyond this capacity for delivering crews and cargo, there is also the need for transportation systems that will address logistical needs and assist in exploration efforts. These requirements were outlined in a 2024 Moon to Mars Architecture white paper titled “Lunar Mobility Drivers and Needs.” Picking up from the concurrently-released “Lunar Surface Cargo,” this whitepaper addresses the need for lunar infrastructure that will enable the movement of astronauts and payloads from landing sites to where they are needed the most. As usual, they identified a critical gap between the current capabilities and what is to be expected.

Continue reading “A Moon Base Will Need a Transport System”

NASA's Skyrocketing Need for Cargo Deliveries to the Moon

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA

NASA has big plans for the Moon. Through the Artemis Program, NASA plans to create a program of “sustained exploration and lunar development.” This will include the creation of the Lunar Gateway, an orbital habitat that will facilitate missions to and from the surface, and the Artemis Base Camp that will allow for extended stays. Through its Commercial Lunar Payload Services (CLPS) program, NASA has contracted with commercial partners like SpaceX and Blue Origin to deliver scientific experiments and crew to the lunar surface.

However, these efforts are expected to culminate in the creation of a permanent outpost and human presence on the Moon. This will require far more in the way of crew and payload services to ensure crews can be sustained in the long run. In a recent white paper, “Lunar Surface Cargo,” NASA researchers identified a significant gap between current cargo delivery capabilities and future demand. The paper indicates that this growing cargo demand can only be met by creating a “mixed cargo lander fleet.”

Continue reading “NASA's Skyrocketing Need for Cargo Deliveries to the Moon”

Making Rocket Fuel Out of Lunar Regolith

An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018
An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018

In the coming years, NASA and other space agencies plan to extend the reach of human exploration. This will include creating infrastructure on the Moon that will allow for crewed missions on a regular basis. This infrastructure will allow NASA and its international partners to make the next great leap by sending crewed missions to Mars (by 2039 at the earliest). Having missions operate this far from Earth for extended periods means that opportunities for resupply will be few and far between. As a result, crews will need to rely on In-Situ Resource Utilization (ISRU), where local resources are leveraged to provide for basic needs.

In addition to air, water, and building materials, the ability to create propellant from local resources is essential. According to current mission architectures, this would consist of harvesting water ice in the polar regions and breaking it down to create liquid oxygen (LOX) and liquid hydrogen (LH2). However, according to a new study led by engineers from McGill University, rocket propellant could be fashioned from lunar regolith as well. Their findings could present new opportunities for future missions to the Moon, which would no longer be restricted to the polar regions.

Continue reading “Making Rocket Fuel Out of Lunar Regolith”

Could A Mound of Dust and Rock Protect Astronauts from Deadly Radiation?

Protecting the astronauts of the Artemis program is one of NASA’s highest priorities. The agency intends to have a long-term presence on the Moon, which means long-term exposure to dangerous radiation levels. As part of the development of the Artemis program, NASA also set limits to the radiation exposure that astronauts can suffer. Other hazards abound on the lunar surface, including a potential micrometeoroid strike, which could cause catastrophic damage to mission equipment or personnel. NASA built a team to design and develop a “Lunar Safe Haven” to protect from these hazards. Their working paper was released in 2022 but still stands as NASA’s best approach to long-term living on the lunar surface.

Continue reading “Could A Mound of Dust and Rock Protect Astronauts from Deadly Radiation?”

Astronauts are Practicing Lunar Operations in New Space Suits

Astronauts were fully suited while conducting mission-like maneuvers in the full-scale build of the Starship human landing system’s airlock which will be located inside Starship under the crew cabin. Credit: SpaceX

Through the Artemis Program, NASA will send astronauts to the lunar surface for the first time since 1972. While the challenges remain the same, the equipment has evolved, including the rocket, spacecraft, human landing system (HLS), and space suits. In preparation for Artemis III (planned for September 2026), NASA recently conducted a test where astronauts donned the new space suits developed by Axiom Space and practiced interacting with the hardware that will take them to the Moon.

Continue reading “Astronauts are Practicing Lunar Operations in New Space Suits”

NASA Wants Heavy Cargo Landers for the Moon

Early conceptual renderings of cargo variants of human lunar landing systems from Blue Origin.
Early conceptual renderings of cargo variants of human lunar landing systems from Blue Origin.

The Artemis Program represents NASA’s effort to return to the Moon. One of the goals of the project is to set up long-term exploration of the Earth’s only natural satellite. This will need much bulkier equipment than what the Apollo astronauts carried though, and this equipment needs to be transported to the Moon’s surface. Blue Origin and SpaceX, contracted by NASA to provide human landing systems, have begun developing vehicles that can safely deliver this equipment from space to the Moon’s surface.

Continue reading “NASA Wants Heavy Cargo Landers for the Moon”

Lunar Explorers Could Run to Create Artificial Gravity for Themselves

A close-up view of astronaut Buzz Aldrin's bootprint in the lunar soil, photographed with the 70mm lunar surface camera during Apollo 11's sojourn on the moon. There'll soon be more boots on the lunar ground, and the astronauts wearing those boots need a way to manage the Moon's low gravity and its health effects. Image by NASA

Few things in life are certain. But it seems highly probable that people will explore the lunar surface over the next decade or so, staying there for weeks, perhaps months, at a time. That fact bumps up against something we are certain about. When human beings spend time in low-gravity environments, it takes a toll on their bodies.

What can be done?

Continue reading “Lunar Explorers Could Run to Create Artificial Gravity for Themselves”

Artemis Astronauts Will Deploy New Seismometers on the Moon

Giordano Bruno crater on the Moon, as seen by the Lunar Reconnaissance Orbiter. This young crater sports impact rays that may help scientists as they consider landing sties for future Artemis missions. Courtesy: NASA/LRO.
Giordano Bruno crater on the Moon, as seen by the Lunar Reconnaissance Orbiter. This young crater sports impact rays that may help scientists as they consider landing sties for future Artemis missions. Courtesy: NASA/LRO.

Back in the 1960s and 1970s, Apollo astronauts set up a collection of lunar seismometers to detect possible Moon quakes. These instruments monitored lunar activity for eight years and gave planetary scientists an indirect glimpse into the Moon’s interior. Now, researchers are developing new methods for lunar quake detection techniques and technologies. If all goes well, the Artemis astronauts will deploy them when they return to the Moon.

Continue reading “Artemis Astronauts Will Deploy New Seismometers on the Moon”

NASA Reveals its Planetary Science Goals for Artemis III

Artist's illustration of Artemis III astronauts on the Moon. Credit: NASA.

If all goes well, NASA’s Artemis III mission will bring humans back to the Moon as early as 2026, the first time since the Apollo 17 crew departed in 1972. It won’t be a vacation, though, as astronauts have an enormous amount of science to do, especially in lunar geology. A team from NASA recently presented their planetary science goals and objectives for Artemis III surface activities, which will guide the fieldwork the astronauts will carry out on the lunar surface.

The Artemis III Geology Team presented their priorities at the Lunar and Planetary Science Conference in March 2024. In addition, NASA also announced their choices for the first science instruments that astronauts will deploy on the surface of the Moon during Artemis III.

Continue reading “NASA Reveals its Planetary Science Goals for Artemis III”