6th Man on Moon Edgar Mitchell, Dies at 85 on Eve of 45th Lunar Landing Anniversary

Apollo 14 astronaut crew, including Moonwalkers Alan B. Shepard Jr., mission commander (first) and Edgar D. Mitchell, lunar module pilot (last), and Stuart A. Roosa, command module pilot (middle) walk out to the astrovan bringing them to the launch pad at NASA’s Kennedy Space Center.    Credit: Julian Leek
Apollo 14 astronaut crew, including Moonwalkers Alan B. Shepard Jr., mission commander (first) and Edgar D. Mitchell, lunar module pilot (last), and Stuart A. Roosa, command module pilot (middle) walk out to the astrovan bringing them to the launch pad at NASA’s Kennedy Space Center. Credit: Julian Leek

KENNEDY SPACE CENTER, FL – NASA astronaut Edgar Mitchell, the 6th man to walk on the Moon, passed away on Thursday, Feb. 4, on the eve of the 45th anniversary of his Apollo 14 mission lunar landing.

Mitchell passed away in West Palm Beach, Fla., just 1 day prior to the 45th anniversary of the Feb. 5, 1971 landing of Apollo 14’s Lunar Module “Antares.” Continue reading “6th Man on Moon Edgar Mitchell, Dies at 85 on Eve of 45th Lunar Landing Anniversary”

NASA’s LADEE Probe Starts Science Study of Thin Lunar Atmosphere and Dusty Mystery

KENNEDY SPACE CENTER, FL – NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) has descended to its planned low altitude orbit and begun capturing science data on its ground breaking mission to study the Moon’s ultra tenuous atmosphere and dust using a spacecraft based on a revolutionary new design aimed at speeding development and cutting costs.

LADEE set sail for Earth’s nearest neighbor during a spectacular night time launch atop the maiden flight of an Air Force Minotaur V rocket on Sept. 6 from NASA’s Wallops Island launch facility on Virginia’s Eastern shore.

The flawless launch thrilled spectators up and down virtually the entire US East coast region and yielded many memorable snapshots.

Following a month long voyage and three and a half long looping orbits of the Earth, LADEE successfully fired its main engine for 4 minutes and 12 seconds on Oct. 6 and successfully entered lunar orbit, Dawn McIntosh, LADEE deputy project manager at NASA Ames Research Center, told Universe Today in an exclusive interview.

A series of engine firings over the past month gradually circularized and lowered LADEE into its final science orbit around our Moon while engineers checked out the spacecraft during the commissioning phase of the mission.

The do or die initial Lunar Orbit Insertion burn (LOI-1) allowed LADEE to be captured into a highly elliptical, equatorial lunar orbit, said McIntosh.

Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia. Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia. Credit: Ken Kremer/kenkremer.com

“Two additional LOI burns on Oct. 6 and Oct 9 lowered LADEE to an approximately 4 hour orbit with a periapsis altitude of 234 Kilometers (km) and apoapsis altitude of 250 km” McIntosh told me.

The trio of LOI main engine firings used up most of LADEE’s precious on board fuel.

“LADEE launched with 134.5 kilograms (kg) of fuel. Post LOI-3, 80% of our fuel has been consumed,” said McIntosh.

“Additional orbit-lowering maneuvers with the orbital control system (OCS) and reaction control system (RCS) of approximately 40 seconds were used to get LADEE into the science orbit.

The spacecraft finally entered its planned two hour science orbit around the moon’s equator on Nov. 20.

Its flying at an extremely low altitude ranging from merely eight to 37 miles (12-60 kilometers) above the moon’s surface.

By circling in this very low altitude equatorial orbit, the washing machine sized probe will make frequent passes crossing from lunar day to lunar night enabling it to precisely measure changes and processes occurring within the moon’s tenuous atmosphere while simultaneously sniffing for uplifted lunar dust in the lunar sky.

The remaining fuel will be used to maintain LADEE’s orbit during the approximately 100 day long science mission. The mission length is dictated by the residual fuel available for thruster firings.

LADEE Science Instrument locations
LADEE Science Instrument locations

The purpose of LADEE is to collect data that will inform scientists in unprecedented detail about the ultra thin lunar atmosphere, environmental influences on lunar dust and conditions near the surface. In turn this will lead to a better understanding of other planetary bodies in our solar system and beyond.

“A thorough understanding of the characteristics of our lunar neighbor will help researchers understand other small bodies in the solar system, such as asteroids, Mercury, and the moons of outer planets,” said Sarah Noble, LADEE program scientist at NASA Headquarters in Washington.

By studying the raised dust, scientists also hope to solve a 40 year old mystery – Why did the Apollo astronauts and early unmanned landers see a glow of rays and streamers at the moon’s horizon stretching high into the lunar sky.

The $280 million probe is built on a revolutionary ‘modular common spacecraft bus’, or body, that could dramatically cut the cost of exploring space and also be utilized on space probes to explore a wide variety of inviting targets in the solar system.

“LADEE is the first in a new class of interplanetary exploration missions,” NASA Ames Director Worden told Universe Today. “It will study the pristine moon to study significant questions.”

“This is probably our last best chance to study the pristine Moon before there is a lot of human activity there changing things.”

LADEE_Poster_01

The 844 pound (383 kg) robot explorer was assembled at NASA’s Ames Research Center, Moffett Field, Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.

LADEE arrived at the Moon last month in the midst of the US government shutdown – which negatively impacted a host of other NASA missions. Only a ‘skeleton crew’ was available.

“All burns went super well,” Worden told me. And he is extremely proud of the entire team of “dedicated” professional men and women who made it possible during the shutdown.

“It says a lot about our people’s dedication and capability when a skeleton crew’ can get a new spacecraft into lunar orbit and fully commissioned in the face of a shutdown!” Worden said to Universe Today.

Now the real science begins for LADEE and the team.

Stay tuned here for continuing LADEE news

Ken Kremer

…………….

Learn more about LADEE, MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 22-25: “SpaceX launch, MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Historic Sept. 6 Virginia Moon Shot Heralds Revolutionary New Paradigm for Fundamental Science Query- NASA Director Interview

In an exclusive new interview with Universe Today, NASA’s Ames Research Center Director Pete Worden was “very excited” to discuss the historic Moon Shot set to launch NASA’s LADEE lunar orbiter from the Virginia coast and the NASA Wallops Island facility on Friday night, Sept. 6, that boasts “a new modular design” that can revolutionize how we explore our solar system “with robotic orbiters, landers and rovers” – and is aimed at “answering fundamental science questions.”

LADEE is the first in a new class of interplanetary exploration missions,” NASA Ames Director Worden told Universe Today. NASA Ames leads the LADEE mission. “It will study the pristine moon to study significant questions.”

“And it will demonstrate a new modular approach that will give us science at a lower cost. We are very excited.”

“It will tell us a lot about the moon,” Worden told me.

When America returns to the Moon with the LADEE spacecraft blasting off shortly before midnight Sept. 6, it could potentially be watched by many tens of millions of spectators – weather permitting – along the US East Coast stretching from Maine to the Carolina’s and into parts of the Midwest. See launch visibility map below.

LADEE Minotaur V Launch - Maximum Elevation Map This map shows the maximum elevation (degrees above the horizon) that the Minotaur V rocket will reach during the Sep. 6, 2013 launch depending on your location along the US east coast. Credit: Orbital Sciences
LADEE Minotaur V Launch – Maximum Elevation Map
The LADEE nighttime launch will be visible to millions of spectators across a wide area of the Eastern US -weather permitting. This map shows the maximum elevation (degrees above the horizon) that the Minotaur V rocket will reach during the Sep. 6, 2013 launch depending on your location along the US east coast. Credit: Orbital Sciences

And the science timing for LADEE’s lunar mission is just perfect as well since several countries and corporations are gearing up to dispatch a batch of new orbiters and landers to Earth’s nearest neighbor that could change its character forever.

“This is probably our last best chance to study the pristine Moon before there is a lot of human activity there changing things.”

The purpose of LADEE’s trio of science instruments is to collect data that will inform scientists in unprecedented detail about the ultra thin lunar atmosphere, environmental influences on lunar dust and conditions near the surface.

Engineers from NASA's Ames Research Center have successfully completed launch preparation activities for blastoff of NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) observatory on Sept. 6. The revolutionary modular science probe has been encapsulated into the nose-cone of the maiden Minotaur V rocket at NASA's Wallops Flight Facility.  Credit:  NASA Ames
Engineers from NASA’s Ames Research Center have successfully completed launch preparation activities for blastoff of NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) observatory on Sept. 6. The revolutionary modular science probe has been encapsulated into the nose-cone of the maiden Minotaur V rocket at NASA’s Wallops Flight Facility. Credit: NASA Ames

The couch sized probe is built on a ‘modular common spacecraft bus’, or body, that could be implemented on space probes to explore a wide variety of targets in the solar system.

“We think the modular bus is a winner,” Worden explained to Universe Today.

“LADEE could lead to other low cost missions to orbit and even land on the Moon, near Earth asteroids, Mercury and also the moons of Mars.”

“The LADEE bus is a strong contender for future NASA planetary missions, especially landers on bodies with a tenuous atmosphere. And small micro-rovers are possible too. We are really proud of it!”

A computer-generated model of the LADEE spacecraft based on the modular common spacecraft bus. Credit: NASA/Ames
A computer-generated model of the LADEE spacecraft based on the modular common spacecraft bus. Credit: NASA/Ames

LADEE is NASA’s first ever planetary mission to launch from the Eastern Shore of Virginia at NASA’s Wallops Flight Facility on Wallops Island. The blastoff is expected to draw large crowds. Some local hotels are already sold out.

The Lunar Atmosphere and Dust Environment Explorer (LADEE) Observatory is NASA’s next mission to the Moon.

It thunder’s to space at 11:27 p.m. Friday, Sept. 6, from launch complex 0B at NASA’s Wallops Island facility and the Mid-Atlantic Regional Spaceport (MARS) atop the maiden flight of the new, solid fueled Minotaur V rocket developed by Orbital Sciences Corp.

Close-up view of STAR 37FM 5th stage solid fuel motor of Minotaur V rocket at NASA Wallops rocket facility will propel LADEE into its lunar transfer orbit. Credit: Ken Kremer/kenkremer.com
LADEE’s Ticket to the Moon – 5th Stage of new Minotaur V rocket
Close-up view of STAR 37 5th stage solid fuel motor for inaugural Minotaur V rocket launch at NASA Wallops rocket facility will propel LADEE into its lunar transfer orbit. LADEE will be mounted on top and surrounded by the payload fairing attached at bottom ring. Credit: Ken Kremer/kenkremer.com

The goal of the $280 Million mission is to gain a thorough understanding of long-standing unknowns about the tenuous atmosphere, dust and surface interactions that will help scientists understand other planetary bodies as well.

“After Apollo, the amazing thing is that we opened as many questions as we answered,” said Worden. “One of the key issues is – What is the environment on the Moon’s surface from the lunar day to the lunar night?”

“And what are the limitations that would place on our activities there?”

“Although the moon has a tenuous atmosphere it’s actually very active and interacts very strongly with the solar wind. It may produce something that on Earth we would call a ‘dust storm’.”

“We also wish to have the ‘ground truth’ [measurements] of the Moon’s environment before humans change things.”

And change is inexorably coming to the Moon rather soon.

“The Chinese plan to land on the Moon by year’s end,” Worden elaborated.

“What we found during Apollo is that an artificial disturbance very considerably changes the Moon’s atmosphere – or exosphere.”

“So we really want to known the pristine state of the lunar exosphere before its changed by human activity.”

“The data we have from Apollo surface measurements shows that it took many months for the lunar exosphere to go back to its pristine state.”

“Now there are probably a half dozen to a dozen programs planning to land on the Moon in the next decade. So we may never see the Moon’s pristine state again!”

“So these are pretty significant questions that we will have an opportunity to answer with LADEE.”

LADEE Science Instrument locations
LADEE Science Instrument locations

LADEE is the first spacecraft of any kind that’s been designed, developed, built, integrated and tested at NASA’s Ames Research Center in Moffett Field, Calif.

“This is our first complete mission built out at Ames,” Worden explained.

“It’s also the first of a new paradigm where we are trying to develop a low cost modular bus design.

The approach on LADEE was to make it a mix and match modular bus – rather than a singular modular bus.

“So we have modular slices that use a propulsion stage, lander stage, communications stage, science payload stage, bus housekeeping stage and more,” Worden told me.

“In the past many others tried to build a ‘one size fits all’ modular bus. But it turns out that one size does NOT fit all needs.”

“So we took a page from how you build desktop computers.”

“We put in different modules that you can expand or subtract much more easily without changing the whole fundamental architecture or design.”

“So assuming this works well, I think you will see a lot more missions. And that makes it really exciting as our first mission.”

And the Ames modular bus has definitely sparked entrepreneurial interest.

“The bus is already an approach being used by at least one of the Google Lunar X-Prize competitors! The Moon Express team has looked at it a lot to transition that capability to them,” Worden explained.

How about future NASA missions?

“The LADEE bus is also a key part of several of our Ames proposals for future planetary missions,” Worden replied.

“The original design concept about seven years ago was for a small lunar lander. The lander propulsion would likely be a solid fueled stage.”

“Ultimately, NASA decided to go with the orbiter instead. And that showed the strength of the modular bus design – that it was very easy to change it from a lunar lander to the LADEE mission orbiter studying the lunar exosphere.”

I asked if it could deploy a small rover too?

“Yes- a small, micro rover is possible, perhaps 10 to 20 inches in size. And you could pack a lot of science on the small rover using today’s technology!

The Modular Common Spacecraft Bus lander configuration in a hover test in 2008. The lander could be used to deploy micro-rovers. Credit: NASA
The Modular Common Spacecraft Bus lander configuration in a hover test in 2008. The lander could be used to deploy micro-rovers. Credit: NASA

Thus there are numerous exploration possibilities – all dependent on the Federal budget for NASA in this extremely difficult fiscal environment.

NASA Ames had “built parts and spacecraft components and science instruments before, but not a spacecraft in the entirety and in house,” Worden told Universe Today.

For example, a few years back Ames built the LCROSS lunar impacting spacecraft that smashed into the Moon’s south pole and discovered a treasure trove of water ice.

LCROSS piggybacked as a secondary science mission payload onto NASA’ s Lunar Reconnaisannce Orbiter (LRO) when the duo launched from Cape Canaveral, Florida atop an Atlas V rocket.

NASA Ames has now taken the next step – having designed and built the whole LADEE spacecraft from beginning to end.

“This is our first real baby. It’s very exciting,” beamed Worden.

“LADEE is a pretty phenomenal mission.”

They say “Virginia is for Lovers’

Well coming this Friday, “Virginia is for Space Lovers too!”

Chris Angulo, LADEE Program Engineering manager of Orbital Sciences, and Ken Kremer of Universe Today inspect the 4th and 5th stages of maiden Minotaur V rocket propelling NASA’s LADEE spacecraft to the Moon on Sept. 6 from NASA Wallops in Virginia. Credit: Ken Kremer/kenkremer.com
Chris Angulo, LADEE Program Engineering manager of Orbital Sciences, and Ken Kremer of Universe Today inspect the 4th and 5th stages of maiden Minotaur V rocket propelling NASA’s LADEE spacecraft to the Moon on Sept. 6 from NASA Wallops in Virginia. Credit: Ken Kremer/kenkremer.com

And remember that NASA has a 2nd historic launch from Wallops slated for Sep. 17 – with blastoff of the Orbital Sciences Antares rocket and Cygnus cargo carrier bound for its 1st flight to the International Space Station (ISS).

Be sure to watch for my continuing LADEE and Antares mission reports from on site at NASA’s Wallops Launch Pads in sunny Virginia – reporting for Universe Today.

Ken Kremer

…………….
Learn more about LADEE, Cygnus, Antares, MAVEN, Orion, Mars rovers and more at Ken’s upcoming presentations

Sep 5/6/16/17: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 9: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

Close Up Side view of NASA Ames built LCROSS lunar impactor. NASA Ames LADEE orbiter is equipped with the UVS science instrument  based on LCROSS heritage.  Credit: Ken Kremer/kenkremer.com
Close Up Side view of NASA Ames built LCROSS lunar impactor. NASA Ames LADEE orbiter is equipped with the UVS science instrument based on LCROSS heritage. Credit: Ken Kremer/kenkremer.com

NASA’s LADEE Lunar Probe Set for Spectacular Science and September Night Launch – Visible to Millions and Millions

LADEE Minotaur V Launch – Maximum Elevation Map
The LADEE nighttime launch will be visible to millions of spectators across a wide area of the Eastern US -weather permitting. This map shows the maximum elevation (degrees above the horizon) that the Minotaur V rocket will reach during the Sep. 6, 2013 launch depending on your location along the US east coast. Credit: Orbital Sciences [/caption]

A spectacular nighttime blastoff blazing a historic trail to the Moon is set to soar in two weeks time when NASA’s LADEE spacecraft lifts off from the Eastern Shore of Virginia at NASA’s Wallops Flight Facility on Wallops Island – from America’s newest spaceport.

NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) Observatory will thunder to space at 11:27 p.m. Friday, Sept. 6, from the commercial Mid-Atlantic Regional Spaceport (MARS) launch complex 0B at NASA’s Wallops Island facility atop the maiden flight of the new, solid fueled Minotaur V rocket developed by Orbital Sciences Corp.

LADEE’s late night launch will be absolutely spectacular and visible to tens of millions of spectators up and down the US East coast and interior areas stretching into the Midwest- weather permitting.

“I love this mission,” said John Grunsfeld, NASA Associate Administrator for Science at NASA Headquarters, at a media briefing today, Aug. 22.

Close-up view of STAR 37FM 5th stage solid fuel motor of Minotaur V rocket at NASA Wallops rocket facility will propel LADEE into its lunar transfer orbit. Credit: Ken Kremer/kenkremer.com
LADEE’s Ticket to the Moon – 5th Stage of new Minotaur V rocket
Close-up view of STAR 37 5th stage solid fuel motor for inaugural Minotaur V rocket launch at NASA Wallops rocket facility will propel LADEE into its lunar transfer orbit. LADEE will be mounted on top and surrounded by the payload fairing attached at bottom ring. Credit: Ken Kremer/kenkremer.com

“With NASA’s prior LRO and GRAIL spacecraft we studied the Moon’s surface and interior. Now with LADEE we study the atmosphere and dust,” said John Grunsfeld.

The purpose of LADEE is to collect data that will inform scientists in unprecedented detail about the ultra thin lunar atmosphere, environmental influences on lunar dust and conditions near the surface. In turn this will lead to a better understanding of other planetary bodies in our solar system and beyond.

The small car sized LADEE lunar orbiter mission will be historic in many ways. It’s the first probe of any kind ever launched to beyond Earth orbit from NASA Wallops, as well as being the first planetary science mission from Wallops.

It also marks the first launch of a five stage rocket and the first launch of a decommissioned Peacekeeper missile from Wallops.

The first three stages of the Minotaur V are based on the nuclear armed Peacekeeper ICBM intercontinental ballistic missile built during the Cold War – now retired and refurbished by Orbital for peaceful uses. Its literally beating sword into ploughshares.

The 5th stage is a new addition and what makes this Minotaur a new rocket class. The added thrust is precisely what enables shooting for the Moon.

Recently, I had an exclusive tour and photoshoot up close and personal with the upper stages of LADEE’s Minotaur V rocket at Wallops prior to integration at the commercial launch pad – 0B – and will be reporting on that here and in upcoming stories.

4th and 5th stages of the inaugural Minotaur V rocket launch that will propel NASA’s LADEE lunar spacecraft to the Moon on Sep. 6, 2013 from NASA Wallops Island in Virginia. Credit: Ken Kremer/kenkremer.com
4th and 5th stages of the inaugural Minotaur V rocket launch that will propel NASA’s LADEE lunar spacecraft to the Moon on Sep. 6, 2013 from NASA Wallops Island in Virginia. Credit: Ken Kremer/kenkremer.com

“LADEE is equipped with three science instruments to study the atmosphere and dust and a lunar laser technology demonstration,” said Joan Salute, LADEE program executive, NASA Headquarters.

These include an ultraviolet and visible light spectrometer that will gather detailed information about the composition of the tenuous lunar atmosphere; a neutral mass spectrometer to measure variations in the lunar atmosphere over time; a laser dust experiment that will collect and analyze dust particle samples; and a laser communications experiment that will test the use of lasers in place of radio waves for high speed dad communications with Earth.

“The lunar atmosphere is so thin that the molecules never collide,’ said Sarah Noble, LADEE program scientist, NASA Headquarters.

“It’s a ‘Surface Boundary Exosphere’ which is actually the most common type of atmosphere in our Solar System.”

Scientists also hope to solve a mystery dating back nearly five decades to the Apollo moon landing era, by determining if electrically charged lunar dust is responsible for the pre-sunrise horizon glow seen by the Apollo astronauts and also by the unmanned Surveyor 7 lander, according to Noble.

LADEE_Poster_01

“This is the first NASA mission with a dedicated laser communications experiment,” said Don Cornwell, mission manager for the Lunar Laser Communications Demonstration, NASA’s Goddard Space Flight Center, Greenbelt, Md.
I asked when we could see laser communications implemented on future NASA spacecraft?

“A new laser communications system could possibly be used on the 2020 Mars rover from the surface of Mars,” Grunsfeld told Universe Today.

The couch sized 844 pound (383 kg) robotic explorer was assembled at NASA’s Ames Research Center, Moffett Field, Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.

The spacecraft is a first of its kind vehicle built from a NASA Ames-developed Modular Common Spacecraft Bus architecture that can be applied to other missions. The mission cost is approximately $280 million.

The Minotaur V will boost LADEE into a highly elliptical orbit. Then over the next 23 days, as LADEE orbits Earth 3.5 times, the Moon’s gravitational field will increase the perigee of its orbit. The spacecraft will fire its on-board braking thrusters to achieve lunar orbit.

NASA Ames LADEE Mission – Lunar Orbital Insertion Animation

Video caption: This animation is a representation of lunar orbital insertion for LADEE, which is the path the spacecraft follows when it is captured by the Moon’s gravity and enters lunar orbit. Credit: NASA Ames/Dana Berry. Note: Animation is silent with no audio/music track included.

The mission will fly in a very low science orbit of about 50 kilometers altitude above the moon. The science mission duration is approximately 100 days.

“It’s limited by the amount of onboard fuel required to maintain orbit,” Doug Voss, launch manager, Wallops, told Universe Today.

“I’m excited about the night launch because people up and down the Atlantic seacoast will be able to see it,” Jim Green, Planetary Science Division Director at NASA HQ, told me.

And don’t forget that NASA has a 2nd really big launch from Wallops slated for Sep. 17 – with blastoff of the Orbital Sciences Antares rocket and Cygnus cargo carrier on their historic 1st mission to the International Space Station (ISS).

I’ll be on site at Wallops for both historic launches on Sep. 6 and 17 – reporting for Universe Today.

We’ll see you in Virginia!

Ken Kremer

…………….
Learn more about LADEE, Cygnus, Antares, MAVEN, Orion, Mars rovers and more at Ken’s upcoming presentations

Sep 5/6/16/17: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 9: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

Looking up the Flame Trench of the LADEE Minotuar V Launch Pad 0B at NASA Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com
Looking up the Flame Trench of the LADEE Minotaur V Launch Pad 0B at NASA Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

Apollo 11 F-1 Engine Finding Confirmed by Jeff Bezos on Eve of 1st Human Moonwalk

In a fitting testament to NASA’s momentous Apollo Moon Landing Program, NASA and billionaire Jeff Bezos confirmed today (July 19) the discovery of a powerful F-1 first stage engine component from the Saturn V moon rocket that launched three American astronauts on the historic journey of Apollo 11 to land the first two humans on the Moon on July 20, 1969.

“On the eve of the 44th moonwalk anniversary, the Bezos Expedition confirms an Apollo 11 Saturn V F1 engine find,” NASA officially announced on its websites just moments ago today, July 19.

Apollo 11 commander and NASA astronaut Neil Armstrong, was immortalized forever when he first set foot on the moon 44 years ago tomorrow (July 20, 1969), followed minutes later by the lunar module pilot, NASA astronaut Buzz Aldrin.

The Saturn V rockets first stage was powered by a cluster of five F-1 engines – a technological marvel and the most powerful single-nozzle, liquid-fueled rocket engine ever developed.

“44 years ago tomorrow Neil Armstrong stepped onto the moon, and now we have recovered a critical technological marvel that made it all possible,” says Bezos on his Expedition website today.

Apollo 11 Saturn V F-1 Engine Thrust Chamber recovered from the floor of the Atlantic Ocean- stenciled with Rocketdyne serial number “2044”. Credit: Jeff Bezos Expeditions
Apollo 11 Saturn V F-1 Engine Thrust Chamber recovered from the floor of the Atlantic Ocean- stenciled with Rocketdyne serial number “2044”. Credit: Jeff Bezos Expeditions

Bezos, founder and Chief Executive Officer of the aerospace company Blue Origin and Amazon.com, originally announced the discovery and recovery of significant components of two flown F-1 engines amongst a field of twisted wreckage from the floor of the Atlantic Ocean in March of this year, aboard the Seabed Worker at Port Canaveral, Florida, along with a treasure trove of other major Saturn V components hauled up from a depth of almost 3 miles.

“We brought back thrust chambers, gas generators, injectors, heat exchangers, turbines, fuel manifolds and dozens of other artifacts – all simply gorgeous and a striking testament to the Apollo program,” wrote Bezos in a update this morning, July 19.

But until today, the engines exact identification remained elusive because of decades of severe seabed corrosion and their fiery, destructive end upon plunging and smashing unimpeded onto the ocean’s surface.

Saturn V F-1 Engine Nozzle recovered from the floor of the Atlantic Ocean. Credit: Jeff Bezos Expeditions
Saturn V F-1 Engine nozzle recovered from the floor of the Atlantic Ocean. Credit: Jeff Bezos Expeditions

Conservators from the Kansas Cosmosphere and Space Center in Hutchinson, Kansas worked painstakingly since March to identify the F-1 engine parts.

“Today, I’m thrilled to share some exciting news. One of the conservators who was scanning the objects with a black light and a special lens filter has made a breakthrough discovery – “2044” – stenciled in black paint on the side of one of the massive thrust chambers, says Bezos.

“2044 is the Rocketdyne serial number that correlates to NASA number 6044, which is the serial number for F-1 Engine #5 from Apollo 11. The intrepid conservator kept digging for more evidence, and after removing more corrosion at the base of the same thrust chamber, he found it – “Unit No 2044” – stamped into the metal surface.”

Blacklight ocean view of Saturn V F-1 Engine recovered from the floor of the Atlantic Ocean.   Credit: Jeff Bezos Expeditions
Blacklight view of Apollo 11 Saturn V F-1 Engine recovered from the floor of the Atlantic Ocean with identifying “2044” serial number. Credit: Jeff Bezos Expeditions

Apollo 11 launched to the Moon on July 16, 1969 from Launch Complex 39-A at the Kennedy Space Center in Florida.

Armstrong and Aldrin landed on the Sea of Tranquility inside the Lunar Module. They took a single lunar excursion and spent 2 hours and 11 minutes as the first two men to walk on the moon. They stayed on the moon for a total of 21 hours and 36 minutes before blasting off for the journey back home to Earth.

Armstrong suddenly passed away nearly a year ago on August 25, 2012 at age 82 – read my stories, here and here.

Aldrin is still active and strenuously advocating for starting human expeditions to the Red Planet.

He outlined his exploration concepts in a newly published book titled – “Mission to Mars.”

neil_bg_800

The five F-1 engines used in the 138-foot-tall Saturn V first stage known as the S-IC generated 7.5 million pounds of liftoff thrust, or some 1.5 million pounds each. They stand 19 feet tall by 12 feet wide. Each one weighs over 18,000 pounds and was manufactured by Rocketdyne.

The F-1 had more power than all three space shuttle main engines combined. They burned a mixture of liquid oxygen and kerosene fuel for two-and-one-half-minutes, carrying the Saturn V to an altitude of some 36 miles.

Altogether, six Apollo Moon landing flights boosted by Saturn V’s sent a total of 12 humans on moon walking expeditions to Earth’s nearest neighbor during the 1960s and 1970s.

“This is a big milestone for the project and the whole team couldn’t be more excited to share it with you all,” Bezos wrote.

Bezos’ Blue Origin firm is also working to develop a commercial rocket and ‘space taxi’ to finally resume launching American astronauts back to low Earth orbit from American soil after a multi year gap.

More than four decades have passed since the last humans traversed the lunar surface in December 1972 during NASA’s Apollo 17 moon landing mission.

After all that time, the F-1 may yet live again.

NASA is now working on an upgraded F-1 to power a future variant of the new SLS heavy lift booster under development and intended to launch humans aboard the new Orion crew capsule back to the Moon and to deep space destinations including Asteroids and Mars.

NASA’s robotic exploration of the moon continues this year with the blastoff of the LADEE Lunar observatory on Sept. 6 from NASA’s Wallops Island facility in Virginia.

Ken Kremer

Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history - exactly 44 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA
Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history – exactly 44 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA

NASA Alters 1st Orion/SLS Flight – Bold Upgrade to Deep Space Asteroid Harbinger Planned

NASA Orion spacecraft blasts off atop 1st Space Launch System rocket in 2017 – attached to European provided service module – on an ambitious mission to explore Deep Space some 40,000 miles beyond the Moon, where an asteroid could be relocated as early as 2021. Credit: NASA
Story updated with further details[/caption]

NASA managers have announced a bold new plan to significantly alter and upgrade the goals and complexity of the 1st mission of the integrated Orion/Space Launch System (SLS) human exploration architecture – planned for blastoff in late 2017.

The ambitious first flight, called Exploration Mission 1 (EM-1), would be targeted to send an unpiloted Orion spacecraft to a point more than 40,000 miles (70,000 kilometers) beyond the Moon as a forerunner supporting NASA’s new Asteroid Redirect Initiative – recently approved by the Obama Administration.

The EM-1 flight will now serve as an elaborate harbinger to NASA’s likewise enhanced EM-2 mission, which would dispatch a crew of astronauts for up close investigation of a small Near Earth Asteroid relocated to the Moon’s vicinity.

Orion crew module separates from Space Launch System (SLS) upper stage. Credit: NASA
Orion crew module separates from Space Launch System (SLS) upper stage. Credit: NASA

Until recently NASA’s plan had been to launch the first crewed Orion atop the 2nd SLS rocket in 2021 to a high orbit around the moon on the EM-2 mission, said NASA Associate Administrator Lori Garver in an prior interview with me at the Kennedy Space Center.

Concept of NASA spacecraft with Asteroid capture mechanism deployed to redirect a small space rock to a stable lunar orbit for later study by astronauts aboard Orion crew capsule. Credit: NASA.
Concept of NASA spacecraft with Asteroid capture mechanism deployed to redirect a small space rock to a stable lunar orbit for later study by astronauts aboard Orion crew capsule. Credit: NASA.

The enhanced EM-1 flight would involve launching an unmanned Orion, fully integrated with the Block 1 SLS to a Deep Retrograde Orbit (DRO) near the moon, a stable orbit in the Earth-moon system where an asteroid could be moved to as early as 2021.

Orion’s mission duration would be nearly tripled to 25 days from the original 10 days.

“The EM-1 mission with include approximately nine days outbound, three to six days in deep retrograde orbit and nine days back,” Brandi Dean, NASA Johnson Space Center spokeswoman told Universe Today exclusively.

The proposed much more technologically difficult EM-1 mission would allow for an exceptionally more vigorous work out and evaluation of the design of all flight systems for both Orion and SLS before risking a flight with humans aboard.

Asteroid Capture in Progress
Asteroid Capture in Progress

A slew of additional thruster firings would exercise the engines to change orbital parameters outbound, around the moon and inbound for reentry.

The current Deep Retrograde Orbit (DRO) plan includes several thruster firings from the Orion service module, including a powered lunar flyby, an insertion at DRO, an extraction maneuver from the DRO and a powered flyby on return to Earth.

Orion would be outfitted with sensors to collect a wide variety of measurements to evaluate its operation in the harsh space environment.

“EM-1 will have a compliment of both operational flight instrumentation and development flight instrumentation. This instrumentation suite gives us the ability to measure many attributes of system functionality and performance, including thermal, stress, displacement, acceleration, pressure and radiation,” Dean told me.

The EM-1 flight has many years of planning and development ahead and further revisions prior to the 2017 liftoff are likely.

“Final flight test objectives and the exact set of instrumentation required to meet those objectives is currently under development,” Dean explained.

Orion is NASA’s next generation manned space vehicle following the retirement of NASA’s trio of Space Shuttles in 2011.

The SLS launcher will be the most powerful and capable rocket ever built by humans – exceeding the liftoff thrust of the Apollo era Moon landing booster, the mighty Saturn V.

“We sent Apollo around the moon before we landed on it and tested the space shuttle’s landing performance before it ever returned from space.” said Dan Dumbacher, NASA’s deputy associate administrator for exploration systems development, in a statement.

“We’ve always planned for EM-1 to serve as the first test of SLS and Orion together and as a critical step in preparing for crewed flights. This change still gives us that opportunity and also gives us a chance to test operations planning ahead of our mission to a relocated asteroid.”

Both Orion and SLS are under active and accelerating development by NASA and its industrial partners.

The 1st Orion capsule is slated to blast off on the unpiloted EFT-1 test flight in September 2014 atop a Delta IV Heavy rocket on a two orbit test flight to an altitude of 3,600 miles above Earth’s surface.

Technicians work on mockups of the Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) to simulate critical assembly techniques inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) in Florida for the EFT-1 mission due to liftoff in September 2014. Credit: Ken Kremer/kenkremer.com
Technicians work on mockups of the Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) to simulate critical assembly techniques inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) in Florida for the EFT-1 mission due to liftoff in September 2014. Credit: Ken Kremer/kenkremer.com

It will then reenter Earth’s atmosphere at speeds of about 20,000 MPH (11 km/sec) and endure temperatures of 4,000 degrees Fahrenheit in a critical test designed to evaluate the performance of Orion’s heatshield and numerous spacecraft systems.

Orion EFT-1 is already under construction at the Kennedy Space Center (KSC) by prime contractor Lockheed Martin – read my earlier story here.

Integration and stacking tests with Orion’s emergency Launch Abort System are also in progress at KSC – details here.

NASA says the SLS is also in the midst of a extensive review process called the Preliminary Design Review (PDR) to ensure that all launch vehicle components and systems will achieve the specified performance targets and be completed in time to meet the 2017 launch date. The PDR will be completed later this summer.

NASA’s goal with Orion/SLS is to send humans to the Moon and other Deep Space destinations like Asteroids and Mars for the first time in over forty years since the final manned lunar landing by Apollo 17 back in 1972.

NASA Headquarters will make a final decision on upgrading the EM-1 mission after extensive technical reviews this summer.

Ken Kremer

Schematic of Orion components. Credit: NASA
Schematic of Orion components. Credit: NASA

Carl Sagan: The Gift of Apollo

We all could use a little Carl Sagan in our day, and this latest installment in a new video series put together by Reid Gower might be just what you need for a little inspiration! Gower puts the words of Sagan to video and music, creating a stunning tribute to both Sagan himself and the Apollo program. Gower says he is “using social media to promote scientific literacy,” and this video is part 8 of “The Sagan Series” and he’s also created a companion set of videos, “The Feynman Series,” using the words of physicist Richard Feynman.

This video is based on a chapter of Sagan’s monumental book Pale Blue Dot: A Vision of the Human Future in Space, a book that has inspired and motivated many people, including me. In this video, Sagan discusses the triumph of landing on the Moon, as well as pointing out the true political motivations for the Apollo missions, and their often overlooked benefits.

China set to ‘Leap Forward in Space’ as Tiangong 1 Rolls to Launch Pad

[/caption]
China’s human spaceflight program is gearing up to take a highly significant “Leap forward in Space” after their “Tiangong 1” prototype space station was rolled out to the remote Gobi desert launch pad at the countries Jiuquan Satellite Launching Center in Gansu Province in anticipation of blastoff sometime this week.

Space officials from the Chinese Manned Space Engineering Office have now confirmed that liftoff of the 8.5 ton Tiangong 1 human rated module atop a Long March CZ-IIF booster rocket is slated to take place during a launch window that extends from Sept. 27 to Sept. 30. The launch was delayed a few days after the recent launch failure of a similar Chinese rocket, the Long March IIC.

China’s burgeoning space efforts come directly on the heels of the voluntary US shutdown of the Space Shuttle program, thereby dismantling all US capability to launch humans into space from American soil for several years until about 2014 at a minimum.

The US manned spaceflight capability gap will be stretched out even further if NASA’s budget for commercial space taxis and the newly proposed SLS launch system is cut by political leaders in Washington, DC.

The integrated Tiangong 1 spacecraft and CZ-2F launch vehicle combination is slowly rolling out of the VAB facility

On Sept. 20, the integrated Long March rocket and Tiangong module were wheeled out of China’s VAB while sitting on top of the Mobile Launch Platform and transferred to the launch gantry at Jiuguan.

The goal of the Tiangong 1 mission is to carry out China’s first human spaceflight related rendezvous and docking mission and to demonstrate that Chinese space engineers have mastered the complicated technology required for a successful outcome.

These skills are akin in complexity to NASA’s Gemini manned program of the 1960’s which paved the way for NASA’s Apollo missions and led directly to the first manned landing on the moon in 1969 by Apollo 11.

Chinas stated goal is to construct a 60 ton Skylab sized space station in earth orbit by 2020.

Check out this CCTV video for further details and imagery of the Chinese space hardware which shows the how China will expand the reach and influence of their space program.

View this Chinese video from NDTV for a glimpse at Chinas long range Space Station plans.

The 40 foot long Tiangong 1 space platform is unmanned and will serve as the docking target for China’s manned Shenzhou capsules in a series of stepping stone learning flights. It is solar powered and equipped to operate in a man-tended mode for short duration missions and in an unmanned mode over the long term.

The initial rendezvous and docking mission will be conducted by the Shenzhou 8 spacecraft, which will fly in an unmanned configuration for the first docking test. Shenzhou 8 is scheduled to soar to space before the end of 2011.

If successful, China plans to quickly follow up with the launch of two manned Shenzhou flights to dock at Tiangong 1 during 2012 – namely Shenzhou 9 & Shenzhou 10.

The multi astronaut chinese crews would float into Tiangong 1 and remain on board for a short duration period of a few days or weeks. The crew would conduct medical, space science and technology tests and experiments.

China’s first female astronaut may be selected to fly as a crew member on one of the two Shenzhou flights in 2012.

Meanwhile, all American astronauts will be completely dependent on the Russian Soyuz capsule for trips to the International Space Station. Russia is still working to correct the third stage malfunction which doomed the recent Progress cargo resupply launch and put a halt to Soyuz launches.

Engineers and technicians are in the process of checking out all Tiangong 1 systems and preliminary weather reports from Chinese media appear favorable for launch.

Shenzhou 8 has also been delivered to the Jinquan launch complex for check out of all systems

Get set for China’s attempt at a ‘Space Spectacular’

The integrated Tiangong 1 spacecraft and CZ-2F combination is transferring to the launch site

Apollo Landing Sites in Stunning 3-D

[/caption]

With the Lunar Reconnaissance Orbiter Camera constantly snapping images of the lunar surface, we have been able to see most of the Apollo landing sites with better and better detail. Image editing wizard Nathanial Burton-Bradford has now “3-D-ified” all the landing sites except Apollo 16, and by viewing these images with 3-D glasses (the ones with red and cyan lenses) the lunar landers are easily visible and really stand out. Other features such as tracks and experiments left by the Apollo astronauts become more visible as well. See more images below, and click on the images for larger versions, or see Nathanial’s Flickr page for more!

The Apollo 12 landing site. Credit: NASA/GSFC/Arizona State University, 3-D by Nathanian Burton-Bradford
Apollo 14 landing site. Credit: NASA/GSFC/Arizona State University, 3-D by Nathanial Burton-Bradford.
Apollo 15 landing site. Credit: NASA/GSFC/Arizona State University, 3-D by Nathanial Burton-Bradford.
Apollo 17 landing site. Credit: NASA/GSFC/Arizona State University, 3-D by Nathanial Burton-Bradford

And for good measure, here’s one of the impact crater created by the Apollo 17 Saturn booster.

The crater made by the Apollo 17 booster. Credit: NASA/GSFC/Arizona State University, 3-D by Nathanial Burton-Bradford.