An Active Galaxy That Erupts Predictably Every 114 Days Or So

Computers are known for their ability to spot patterns.  It’s what they are good at, and over the last 50+ years they have continued to improve.  But they only know how to spot patterns if they know where to look for them in data.  So sometimes, it falls to a human to truly see a pattern that no one expected to be there.

That is exactly what happened in the case of the discovery of the most consistent active galaxy yet discovered.  Anna Payne, a graduate student at the University of Hawai’i at Manoa, was looking into data collected by the All Sky Automated Survey for Supernovae (ASAS-SN), and notice a strange feature about one of its galaxies, known as ESO 253-3: it was getting significantly brighter every 114 days.

Continue reading “An Active Galaxy That Erupts Predictably Every 114 Days Or So”

New Research Reveals How Galaxies Stay Hot and Bothered

This visualization uses data from simulations of orbital motions of gas swirling around at about 30% of the speed of light on a circular orbit around the black hole. Credit: ESO/Gravity Consortium/L. Calçada

It’s relatively easy for galaxies to make stars. Start out with a bunch of random blobs of gas and dust. Typically those blobs will be pretty warm. To turn them into stars, you have to cool them off. By dumping all their heat in the form of radiation, they can compress. Dump more heat, compress more. Repeat for a million years or so.

Eventually pieces of the gas cloud shrink and shrink, compressing themselves into a tight little knots. If the densities inside those knots get high enough, they trigger nuclear fusion and voila: stars are born.

Continue reading “New Research Reveals How Galaxies Stay Hot and Bothered”

Astronomers Count all the Photons in the Universe. Spoiler Alert: 4,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 Photons

The NASA/ESA Hubble Space Telescope offers this delightful view of the crowded stellar encampment called Messier 68, a spherical, star-filled region of space known as a globular cluster. Mutual gravitational attraction amongst a cluster’s hundreds of thousands or even millions of stars keeps stellar members in check, allowing globular clusters to hang together for many billions of years. Astronomers can measure the ages of globular clusters by looking at the light of their constituent stars. The chemical elements leave signatures in this light, and the starlight reveals that globular clusters' stars typically contain fewer heavy elements, such as carbon, oxygen and iron, than stars like the Sun. Since successive generations of stars gradually create these elements through nuclear fusion, stars having fewer of them are relics of earlier epochs in the Universe. Indeed, the stars in globular clusters rank among the oldest on record, dating back more than 10 billion years. More than 150 of these objects surround our Milky Way galaxy. On a galactic scale, globular clusters are indeed not all that big. In Messier 68's case, its constituent stars span a volume of space with a diameter of little more than a hundred light-years. The disc of the Milky Way, on the other hand, extends over some 100 000 light-years or more. Messier 68 is located about 33 000 light-years from Earth in the constellation Hydra (The Female Water Snake). French astronomer Charles Messier notched the object as the sixty-eighth entry in his famous catalogue in 1780. Hubble added Messier 68 to its own impressive list of cosmic targets in this image using the Wide Field Camera of Hubble’s Advanced Camera for Surveys. The image, which combines visible and infrared light, has a field of view of approximately 3.4 by 3.4 arcminutes. Credit: Hubble/NASA/ESA

Imagine yourself in a boat on a great ocean, the water stretching to the distant horizon, with the faintest hints of land just beyond that. It’s morning, just before dawn, and a dense fog has settled along the coast. As the chill grips you on your early watch, you catch out of the corner of your eye a lighthouse, feebly flickering through the fog.

And – yes – there! Another lighthouse, closer, its light a little stronger. As you scan the horizon more lighthouses signal the dangers of the distant coast.
Continue reading “Astronomers Count all the Photons in the Universe. Spoiler Alert: 4,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 Photons”

Winds of Supermassive Black Holes Can Shape Galaxy-Wide Star Formation

An illustration that shows the powerful winds driven by a supermassive black hole at the centre of a galaxy. The schematic figure in the inset depicts the innermost regions of the galaxy where a black hole accretes, that is, consumes, at a very high rate the surrounding matter (light grey) in the form of a disc (darker grey). At the same time, part of that matter is cast away through powerful winds. (Credits: XMM-Newton and NuSTAR Missions; NASA/JPL-Caltech;Insert:ESA)

The combined observations from two generations of X-Ray space telescopes have now revealed a more complete picture of the nature of high-speed winds expelled from super-massive black holes. Scientist analyzing the observations discovered that the winds linked to these black holes can travel in all directions and not just a narrow beam as previously thought. The black holes reside at the center of active galaxies and quasars and are surrounded by accretion discs of matter. Such broad expansive winds have the potential to effect star formation throughout the host galaxy or quasar. The discovery will lead to revisions in the theories and models that more accurately explain the evolution of quasars and galaxies.

This plot of data from NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and the European Space Agency's (ESA's) XMM-Newton determines for the first time the shape of ultra-fast winds from supermassive black holes, or quasars. The winds blow in every direction, in a nearly spherical fashion, coming from both sides of a galaxy (Credit: NASA/JPL-Caltech/Keele Univ.;XMM-Newton and NuSTAR Missions)
This plot of data from NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) and the European Space Agency’s (ESA’s) XMM-Newton determines for the first time the shape of ultra-fast winds from supermassive black holes, or quasars. The winds blow in every direction, in a nearly spherical fashion, coming from both sides of a galaxy (Credit: NASA/JPL-Caltech/Keele Univ.;XMM-Newton and NuSTAR Missions, [Ref])
The observations were by the XMM-Newton and NuSTAR x-ray space telescopes of the quasar PDS 456. The observations were combined into the graphic, above. PDS 456 is a bright quasar residing in the constellation Serpens Cauda (near Ophiuchus). The data graph shows both a peak and a trough in the otherwise nominal x-ray emission profile as shown by the NuSTAR data (pink). The peak represents X-Ray emissions directed towards us (i.e.our telescopes) while the trough is X-Ray absorption that indicates that the expulsion of winds from the super-massive black hole is in many directions – effectively a spherical shell. The absorption feature caused by iron in the high speed wind is the new discovery.

X-Rays are the signature of the most energetic events in the Cosmos but also are produced from some of the most docile bodies – comets. The leading edge of a comet such as Rosetta’s P67 generates X-Ray emissions from the interaction of energetic solar ions capturing electrons from neutral particles in the comet’s coma (gas cloud). The observations of a super-massive black hole in a quasar billions of light years away involve the generation of x-rays on a far greater scale, by winds that evidently has influence on a galactic scale.

A diagram of the ESA XMM-Newton X-Ray Telescope. Delivered to orbit by a Ariane 5 launch vehicle in 1999. (Illustration Credit: ESA/XMM-Newton)
A diagram of the ESA XMM-Newton X-Ray Telescope. Delivered to orbit by a Ariane 5 launch vehicle in 1999. (Illustration Credit: ESA/XMM-Newton)

The study of star forming regions and the evolution of galaxies has focused on the effects of shock waves from supernova events that occur throughout the lifetime of a galaxy. Such shock waves trigger the collapse of gas clouds and formation of new stars. This new discovery by the combined efforts of two space telescope teams provides astrophysicists new insight into how star and galaxy formation takes place. Super-massive blackholes, at least early in the formation of a galaxy, can influence star formation everywhere.

The NuStar Space Telescope launched into Earth orbit by a Orbital Science Corp. Pegasus rocket, 2012. The Wolter telescope design images throughout a spectral range from 5 to 80 KeV. (Credit: NASA/Caltech-JPL)
The NuStar Space Telescope launched into Earth orbit by a Orbital Science Corp. Pegasus rocket, 2012. The Wolter telescope design – optics in the foreground, 10 meter truss and detectors at back – images throughout a spectral range from 5 to 80 KeV. (Credit: NASA/Caltech-JPL)

Both the ESA built XMM-Newton and the NuSTAR X-Ray space telescope, a SMEX class NASA mission, use grazing incidence optics, not glass (refraction) or mirrors (reflection) as in conventional visible light telescopes. The incidence angle of the X-rays must be very shallow and consequently the optics are extended out on a 10 meter (33 foot) truss in the case of NuSTAR and over a rigid frame on the XMM-Newton.

Diagram of one of three x-ray telescopes of the XMM-Newton design. Only a few of the grazing angle concentric mirrors are shown. Inset: a simplified illustration of how a Wolter telescope works. (Credits: Wikimedia, ESA)
Diagram of one of three x-ray telescopes of the XMM-Newton design. Only a few of the grazing angle concentric mirrors are shown. Inset: a simplified illustration of how a Wolter telescope works. (Credits: Wikimedia, ESA) [click to enlarge]

The spectral ranges of the XMM-Newton and NuSTAR Telescopes. (Credits: NASA, ESA)
The spectral ranges of the XMM-Newton and NuSTAR Telescopes. (Credits: NASA, ESA)

The ESA built XMM-Newton was launched in 1999, an older generation design that used a rigid frame and structure. All the fairing volume and lift capability of the Ariane 5 launch vehicle was needed to put the Newton in orbit. The latest X-Ray telescope – NuSTAR – benefits from tens years of technological advances. The detectors are more efficient and faster and the rigid frame was replaced with a compact truss which required all of 30 minutes to deploy. Consequently, NuSTAR was launched on a Pegasus rocket piggybacked on a L-1011, a significantly smaller and less expensive launch system.

So now these observations are effectively delivered to the theorists and modelers. The data is like a new ingredient in the batter from which a galaxy and stars are formed. The models of galaxy and star formation will improve and will more accurately describe how quasars, with their active super-massive black-holes, transition into more quiescent galaxies such as our own Milky Way.




Three Supermassive Black Holes Tango in a Distant Galaxy, Marking a Huge Discovery

"Helical jets from one supermassive black hole caused by a very closely orbiting companion (see blue dots). The third black hole is part of the system, but farther away and therefore emits relatively straight jets." Credit: Roger Deane (large image); NASA Goddard (inset bottom left; modified from original)

In a galaxy four billion light-years away, three supermassive black holes are locked in a whirling embrace. It’s the tightest trio of black holes known to date and even suggests that these closely packed systems are more common than previously thought.

“What remains extraordinary to me is that these black holes, which are at the very extreme of Einstein’s Theory of General Relativity, are orbiting one another at 300 times the speed of sound on Earth,” said lead author Roger Deane from the University of Cape Town in a press release.

“Not only that, but using the combined signals from radio telescopes on four continents we are able to observe this exotic system one third of the way across the Universe. It gives me great excitement as this is just scratching the surface of a long list of discoveries that will be made possible with the Square Kilometer Array.”

The system, dubbed SDSS J150243.091111557.3, was first identified as a quasar — a supermassive black hole at the center of a galaxy, which is rapidly accreting material and shining brightly — four years ago. But its spectrum was slightly wacky with its doubly ionized oxygen emission line [OIII] split into two peaks instead of one.

A favorable explanation suggested there were two active supermassive black holes hiding in the galaxy’s core.

An active galaxy typically shows single-peaked narrow emission lines, which stem from a surrounding region of ionized gas, Deane told Universe Today. The fact that this active galaxy shows double-peaked emission lines, suggests there are two surrounding regions of ionized gas and therefore two active supermassive black holes.

But one of the supermassive black holes was enshrouded in dust. So Deane and colleagues dug a little further. They used a technique called Very Long Baseline Interferometry (VLBI), which is a means of linking telescopes together, combining signals separated by up to 10,000 km to see detail 50 times greater than the Hubble Space Telescope.

Observations from the European VLBI network — an array of European, Chinese, Russian, and South American antennas — revealed that the dust-covered supermassive black hole was once again two instead of one, making the system three supermassive black holes in total.

The VLBI network. Image Credit: Deane
The VLBI network. Image Credit: Roger Deane

“This is what was so surprising,” Deane told Universe Today. “Our aim was to confirm the two suspected black holes. We did not expect one of these was in fact two, which could only be revealed by the European VLBI Network due [to the] very fine detail it is able to discern.”

Deane and colleagues looked through six similar galaxies before finding their first trio. The fact that they found one so quickly suggests that they’re more common than previously thought.

The inner pair of black holes of the triple system as seen by the European VLBI Network (EVN). Contours show radio emission at 1.7 GHz, the colour scale show radio emission at 5 GHz frequency. Credit: R.P. Deane et al.
The inner pair of black holes of the triple system as seen by the European VLBI Network (EVN). Image Credit: R.P. Deane et al.

Before today, only four triple black hole systems were known, with the closest pair being 2.4 kiloparsecs apart — roughly 2,000 times the distance from Earth to the nearest star, Proxima Centauri. But the closest pair in this trio is separated by only 140 parsecs — roughly 10 times that same distance.

Although Deane and colleagues relied on the phenomenal resolution of the VLBI technique in order to spatially separate the two close-in black holes, they also showed that their presence could be inferred from larger-scale features. The orbital motion of the black hole, for instance, is imprinted on its large jets, twisting them into a helical-like shape. This may provide smaller telescopes with a tool to find them with much greater efficiency.

“If the result holds up, it’ll be very cool,” binary supermassive black hole expert Jessie Runnoe from Pennsylvania State University told Universe Today. This research has multiple implications for understanding further phenomena.

The first sheds light on galaxy evolution. Two or three supermassive black holes are the smoking gun that the galaxy has merged with another. So by looking at these galaxies in detail, astronomers can understand how galaxies have evolved into their present-day shapes and sizes.

The second sheds light on a phenomenon known as gravitational radiation. Einstein’s General Theory of Relativity predicts that when one of the two or three supermassive black holes spirals inward, gravitational waves — ripples in the fabric of space-time itself — propagate out into space.

Future radio telescopes should be able to measure gravitational waves from such systems as their orbits decay.

“Further in the future, the Square Kilometer Array will allow us to find and study these systems in exquisite detail, and really allow us [to] gain a much better understanding of how black holes shape galaxies over the history of the Universe,” said coauthor Matt Jarvis from the Universities of Oxford and Western Cape.

The research was published today in the journal Nature.

Galactic Mergers Fail to Feed Black Holes

By comparing 140 galaxies that had Active Galactic Nuclei with over 1200 galaxies in a "control group", the likelihood that mergers are the cause of AGN has been brought into doubt. Credit: NASA, ESA, M. Cisternas (Max-Planck Institute for Astronomy)


The large black holes that reside at the center of galaxies can be hungry beasts. As dust and gas are forced into the vicinity around the black holes, it crowds up and jostles together, emitting lots of heat and light. But what forces that gas and dust the last few light years into the maw of these supermassive black holes?

It has been theorized that mergers between galaxies disturbs the gas and dust in a galaxy, and forces the matter into the immediate neighborhood of the black hole. That is, until a recent study of 140 galaxies hosting Active Galactic Nuclei (AGN) – another name for active black holes at the center of galaxies – provided strong evidence that many of the galaxies containing these AGN show no signs of past mergers.

The study was performed by an international team of astronomers. Mauricio Cisternas of the Max Planck Institute for Astronomy and his team used data from 140 galaxies that were imaged by the XMM-Newton X-ray observatory. The galaxies they sampled had a redshift between z= 0.3 – 1, which means that they are between about 4 and 8 billion light-years away (and thus, the light we see from them is about 4-8 billion years old).

They didn’t just look at the images of the galaxies in question, though; a bias towards classifying those galaxies that show active nuclei to be more distorted from mergers might creep in. Rather, they created a “control group” of galaxies, using images of inactive galaxies from the same redshift as the AGN host galaxies. They took the images from the Cosmic Evolution Survey (COSMOS), a survey of a large region of the sky in multiple wavelengths of light. Since these galaxies were from the same redshift as the ones they wanted to study, they show the same stage in galactic evolution. In all, they had 1264 galaxies in their comparison sample.

The way they designed the study involved a tenet of science that is not normally used in the field of astronomy: the blind study. Cisternas and his team had 9 comparison galaxies – which didn’t contain AGN – of the same redshift for each of their 140 galaxies that showed signs of having an active nucleus.

What they did next was remove any sign of the bright active nucleus in the image. This means that the galaxies in their sample of 140 galaxies with AGN would essentially appear to even a trained eye as a galaxy without the telltale signs of an AGN. They then submitted the control galaxies and the altered AGN images to ten different astronomers, and asked them to classify them all as “distorted”, “moderately distorted”, or “not distorted”.

Since their sample size was pretty manageable, and the distortion in many of the galaxies would be too subtle for a computer to recognize, the pattern-seeking human brain was their image analysis tool of choice. This may sound familiar – something similar is being done with enormous success with people who are amateur galaxy classifiers at Galaxy Zoo.

When a galaxy merges with another galaxy, the merger distorts its shape in ways that are identifiable – it will warp a normally smooth elliptical galaxy out of shape, and if the galaxy is a spiral the arms seem to be a bit “unwound”. If it were the case that galactic mergers are the most likely cause of AGN, then those galaxies with an active nucleus would be more probable to show distortion from this past merger.

The team went through this process of blinding the study to eliminate any bias that those looking at the images would have towards classifying AGN as more distorted. By both having a reasonably large sample size of galaxies and removing any bias when analyzing the images, they hoped to definitively show whether the correlation between AGN and mergers exists.

The result? Those galaxies with an Active Galactic Nucleus did not show any more distortion on the whole than those galaxies in the comparison sample. As the authors state in the paper, “Mergers and interactions involving AGN hosts are not dominant, and occur no more frequently than for inactive galaxies.”

This means that astronomers can’t point towards galactic mergers as the main reason for AGN. The study showed that at least 75% of AGN creation – at least between the last 4-8 billion years – must be from sources other than galactic mergers. Likely candidates for these sources include: “galactic harrassment”, those galaxies that don’t collide, but come close enough to gravitationally influence each other; the instability of the central bar in a galaxy; or the collision of giant molecular clouds within the galaxy.

Knowing that AGN aren’t caused in large part by galactic mergers will help astronomers to better understand the formation and evolution of galaxies. The active nuclei in galaxies that host them greatly influence galactic formation. This process is called ‘AGN feedback’, and the mechanisms and effects that result from the interplay between the energy streaming out of the AGN and the surrounding material in the center of a galaxy is still a hot topic of study in astronomy.

Mergers in the more distant past than 8 billion years might yet correlate with AGN – this study only rules out a certain population of these galaxies – and this is a question that the team plans to take on next, pending surveys by the Hubble Space Telescope and the James Webb Space Telescope. Their study will be published in the January 10 issue of the Astrophysical Journal, and a pre-print version is available on Arxiv.

Source: HST news release, Max Planck Institute for Astronomy, Arxiv paper

J-E-T-S, Jets, Jets, Jets!

Bipolar jet from a young stellar object (YSO). Credit: Gemini Observatory, artwork by Lynette Cook


It seems oddly appropriate to be writing about astrophysical jets on Thanksgiving Day, when the New York football Jets will be featured on television. In the most recent issue of Science, Carlos Carrasco-Gonzalez and collaborators write about how their observations of radio emissions from young stellar objects (YSOs) shed light one of the unsolved problems in astrophysics; what are the mechanisms that form the streams of plasma known as polar jets? Although we are still early in the game, Carrasco-Gonzalez et al have moved us closer to the goal line with their discovery.

Astronomers see polar jets in many places in the Universe. The largest polar jets are those seen in active galaxies such as quasars. They are also found in gamma-ray bursters, cataclysmic variable stars, X-ray binaries and protostars in the process of becoming main sequence stars. All these objects have several features in common: a central gravitational source, such as a black hole or white dwarf, an accretion disk, diffuse matter orbiting around the central mass, and a strong magnetic field.

Relativistic jet from an AGN. Credit: Pearson Education, Inc., Upper Saddle River, New Jersey

When matter is emitted at speeds approaching the speed of light, these jets are called relativistic jets. These are normally the jets produced by supermassive black holes in active galaxies. These jets emit energy in the form of radio waves produced by electrons as they spiral around magnetic fields, a process called synchrotron emission. Extremely distant active galactic nuclei (AGN) have been mapped out in great detail using radio interferometers like the Very Large Array in New Mexico. These emissions can be used to estimate the direction and intensity of AGNs magnetic fields, but other basic information, such as the velocity and amount of mass loss, are not well known.

On the other hand, astronomers know a great deal about the polar jets emitted by young stars through the emission lines in their spectra. The density, temperature and radial velocity of nearby stellar jets can be measured very well. The only thing missing from the recipe is the strength of the magnetic field. Ironically, this is the one thing that we can measure well in distant AGN. It seemed unlikely that stellar jets would produce synchrotron emissions since the temperatures in these jets are usually only a few thousand degrees. The exciting news from Carrasco-Gonzalez et al is that jets from young stars do emit synchrotron radiation, which allowed them to measure the strength and direction of the magnetic field in the massive Herbig-Haro object, HH 80-81, a protostar 10 times as massive and 17,000 times more luminous than our Sun.

Finally obtaining data related to the intensity and orientation of the magnetic field lines in YSO’s and their similarity to the characteristics of AGN suggests we may be that much closer to understanding the common origin of all astrophysical jets. Yet another thing to be thankful for on this day.