1,500 New Type 1A Supernova Found as Part of the Dark Energy Survey

An example of a supernova discovered by the Dark Energy Survey within the field covered by one of the individual detectors in the Dark Energy Camera. The supernova exploded in a spiral galaxy with redshift = 0.04528, which corresponds to a light-travel time of about 0.6 billion years. In comparison, the quasar at the right has a redshift of 3.979 and a light-travel time of 11.5 billion years. Image Credit: DES Collaboration/NOIRLab/NSF/AURA/M. Zamani

Supernova explosions are fascinating because they’re so cataclysmic, powerful, and awe-inspiring. They’re Nature’s summer blockbusters. Humans have recorded their existence in ancient astronomical records and stone carvings, and in our age, with telescopes.

Now, the Dark Energy Survey (DES) has uncovered the largest number of Type 1A supernovae ever found with a single telescope.

Continue reading “1,500 New Type 1A Supernova Found as Part of the Dark Energy Survey”

JWST and Chandra Team Up for a Stunning View of Supernova Remnant Cassiopeia A

This image of Cassiopeia A comes from a combination of data from the Chandra X-ray telescope and the James Webb Space Telescope. Credit: X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI; IR: NASA/ESA/CSA/STScI/Milisavljevic et al., NASA/JPL/CalTech; Image Processing: NASA/CXC/SAO/J. Schmidt and K. Arcand

NASA’s long-lived Chandra X-ray Observatory teamed up with JWST for the first time, producing this incredibly detailed image of the famous supernova remnant Cassiopeia A. JWST first looked at the remnant in April 2023, and noticed an unusual debris structure from the destroyed star, dubbed the “Green Monster.” The combined view has helped astronomers better understand what this unusual structure is, plus it uncovered new details about the explosion that created Cas A.

Continue reading “JWST and Chandra Team Up for a Stunning View of Supernova Remnant Cassiopeia A”

Multiple Supernova Remnants Merging in a Distant Nebula

The nebula 30 Doradus B seen in x-ray, optical, and visible light. Credit: X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; Optical: NASA/STScI/HST; Infrared: NASA/JPL/CalTech/SST; Image Processing: NASA/CXC/SAO/J. Schmidt, N. Wolk, K. Arcand

The key to astronomy is careful observation. Unlike many sciences, astronomers can’t often do their work in a lab. Sure, they can build space telescopes and large ground observatories, but even with tools as simple as sticks and stones astronomers were able to change our understanding of the Universe with patience and observation. That tradition still holds true today, as a recent study in The Astronomical Journal shows.

Continue reading “Multiple Supernova Remnants Merging in a Distant Nebula”

Webb Sees a Supernova Go Off in a Gravitationally Lensed Galaxy – for the Second Time

NASA’s James Webb Space Telescope has spotted a multiply-imaged supernova in a distant galaxy designated MRG-M0138. Image Credit: NASA, ESA, CSA, STScI, Justin Pierel (STScI) and Andrew Newman (Carnegie Institution for Science).

Nature, in its infinite inventiveness, provides natural astronomical lenses that allow us to see objects beyond the normal reach of our telescopes. They’re called gravitational lenses, and a few years ago, the Hubble Space Telescope took advantage of one of them to spot a supernova explosion in a distant galaxy.

Now, the JWST has taken advantage of the same lens and found another supernova in the same galaxy.

Continue reading “Webb Sees a Supernova Go Off in a Gravitationally Lensed Galaxy – for the Second Time”

JWST Delivers A Fantastic New Image Of Supernova Remnant Cassiopeia A

Like a shiny, round ornament ready to be placed in the perfect spot on a holiday tree, supernova remnant Cassiopeia A (Cas A) gleams in a new image from the NASA/CSA/ESA James Webb Space Telescope. Image Credit: NASA/CSA/ESA

Astronomy is all about light. Sensing the tiniest amounts of it, filtering it, splitting it into its component wavelengths, and making sense of it, especially from objects a great distance away. The James Webb Space Telescope is especially adept at this, as this new image of supernova remnant (SNR) Cassiopeia A exemplifies so well.

Continue reading “JWST Delivers A Fantastic New Image Of Supernova Remnant Cassiopeia A”

Can a Dead Star Keep Exploding?

This is an artist’s representation of AT2022tsd, an explosion in a distant galaxy. The image shows one possible explanation for the strange object. It could be a black hole accreting matter from a disk and powering a jet. Variation in the jet's direction could produce the observed rapid flashes. Image Credit: Robert L. Hurt/Caltech/IPAC

In September 2022, an automated sky survey detected what seemed to be a supernova explosion about one billion light-years away. The Zwicky Transient Facility (ZTF) spotted it and gave it the name AT2022tsd. But something was different about this supernova. Supernovae explode and shine brightly for months, while AT2022tsd exploded brightly and then faded within days.

Continue reading “Can a Dead Star Keep Exploding?”

An Amateur Astronomer Discovered One-of-a-Kind Supernova Remnant

PA 30 imaged in O III on Sept 6, 2013 by KPNO from Ritter et al (2021) (left) and in S II from Fesen et al (2023) (right).

In 2013, amateur astronomer Dana Patchick was looking through images from the Wide-field Infrared Survey Explorer archive and discovered a diffuse, circular object near the constellation of Cassiopeia. He found this apparent nebula was interesting because it was bright in the infrared portion of the spectrum, but virtually invisible in the colors of light visible to our eyes. Dana added this item to the database of the Deep Sky Hunters amateur astronomers group, believing it was a planetary nebula – the quiet remnant of stars in mass similar to the sun. He named it PA 30.

However, professional astronomers who picked it up from there realized that this object is far more than it first seemed. It is, they now believe, the remnant of a lost supernova observed in 1181. And an extremely rare type at that.

Continue reading “An Amateur Astronomer Discovered One-of-a-Kind Supernova Remnant”

Astronomers Find Dozens of Massive Stars Fleeing the Milky Way

This is Zeta Ophiuchi, a runaway star observed by Spitzer. The star is creating a bow shock as it travels through an interstellar dust cloud. A new study found dozens of new runaway stars in the Milky Way. Image Credit: NASA/JPL-Caltech

The Milky Way can’t hold onto all of its stars. Some of them get ejected into intergalactic space and spend their lives on an uncertain journey. A team of astronomers took a closer look at the most massive of these runaway stars to see what they could find out how they get ejected.

Continue reading “Astronomers Find Dozens of Massive Stars Fleeing the Milky Way”

Astronomers are Hoping to Detect Gravitational Waves Coming from Supernova 1987A

This Hubble Space Telescope image shows Supernova 1987A within the Large Magellanic Cloud, a neighboring galaxy to our Milky Way.
Hubble Space Telescope image of SN1987A in the Large Magellanic Cloud (Credit : NASA)

A supernova explosion is a cataclysmic explosion that marks the violent end of a massive star’s life. During the event, the star releases immense amounts of energy, often outshining the combined light from all the stars in the host galaxy for a very brief period of time. The explosion produces heavy elements and spreads them out among the stars to contribute to the formation of new stars and planets. The closest supernova in recent years occurred in the Large Magellanic Cloud in 1987 (SN1987A) and now, a team of astronomers have searched through mountains of data to see if they can detect gravitational waves from the remnant. 

Continue reading “Astronomers are Hoping to Detect Gravitational Waves Coming from Supernova 1987A”

Searching for the Supernova Neutrino Background to the Universe

Hubble Space Telescope image of supernova 1994D in galaxy NGC 4526.
Hubble Space Telescope image of supernova 1994D in galaxy NGC 4526.

It’s a sobering statement that stars like the Sun, more accurately ALL stars will die eventually, yes even the Sun! Don’t panic though, we still have a good few billion years to go so you will get to the end of this article. The more massive stars die as the dramatic supernovae explosions and when they do, they send a burst of neutrinos across the Universe.  Astronomers now think it’s likely there is a background of neutrinos across the cosmos and that one day we will be able to map the historical distribution of supernova explosions, may be even by 2035.

Continue reading “Searching for the Supernova Neutrino Background to the Universe”