Can Astronomers Predict Which Stars Are About to Explode as Supernovae?

In a recent study submitted to High Energy Astrophysical Phenomena, a team of researchers from Japan discuss strategies to observe, and possibly predict precursor signatures for an explosion from Local Type II and Galactic supernovae (SNe). This study has the potential to help us better understand both how and when supernovae could occur throughout the universe, with supernovae being the plural form of supernova (SN). But just how important is it to detect supernovae before they actually happen?

Continue reading “Can Astronomers Predict Which Stars Are About to Explode as Supernovae?”

Recent Supernovae Produced Giant Cavities in the Orion Nebula

This image of the Orion Nebula shows the puzzilng Barnard's Loop feature, a structure made of gas first identified in 1898, Image Credit: Michael Foley

The Orion Nebula is a well-known feature in the night sky and is visible in small backyard telescopes. Orion is a busy place. The region is known for active star formation and other phenomena. It’s one of the most scrutinized features in the sky, and astronomers have observed all kinds of activity there: planets forming in protoplanetary disks, stars beginning their lives of fusion inside collapsing molecular clouds, and the photoevaporative power of massive hot stars as they carve out openings in clouds of interstellar gas.

But supernova explosions are leaving their mark on the Orion Nebula too. New research says supernovae explosions in recent astronomical history are responsible for a mysterious feature first formally identified in the night sky at the end of the 19th century. It’s called Barnard’s Loop, and it’s a gigantic loop of hot gas as large as 300 light-years across.

Continue reading “Recent Supernovae Produced Giant Cavities in the Orion Nebula”

Do Ancient Coins Record the Supernova of 1054?

SN 1054 was one of the most spectacular astronomical events of all time. The supernova explosion eventually formed what is today known as the M1 – the Crab Nebula. But in 1054 AD, the year it occurred, it was an ultrabright star in the sky and one of only eight recorded supernovae in the history of the Milky Way. However, it was only noted by half of the literate world. Primarily written about in the East, especially in China, SN 1054 was almost wholly absent from the Western record. Except, potentially, for a subtle hint at it in the most unlikely of places – some Byzantine coins.

Continue reading “Do Ancient Coins Record the Supernova of 1054?”

We can Probably Find Supernovae Enhanced by Gravitational Lensing, We Just Need to Look

Using the microlensing metthod, a team of astrophysicists have found the first extra-galactic planets! Credit: NASA/Tim Pyle

Gravitational lensing provides an opportunity to see supernovae and other transients much farther than we normally can. A new research proposal outlines a plan to use a comprehensive catalog of strong gravitational lenses to capture these rare events at extreme distances.

Continue reading “We can Probably Find Supernovae Enhanced by Gravitational Lensing, We Just Need to Look”

Supernova Remnant Cassiopeia A is Lopsided

Coloured image of Cassiopeia A based on data from the space telescopes Hubble, Spitzer and Chandra. Image Credit: NASA/JPL-Caltech [via Wikimedia]

Cassiopeia A is the remnant of a supernova that exploded 11,000 light-years away. The light from the exploding star likely reached Earth around 1670 (only a couple of years before Newton invented the reflecting telescope.) But there are no records of it because the optical light didn’t reach Earth.

The Cass A nebula ripples with energy and light from the ancient explosion and is one of the most-studied objects in deep space. It’s an expanding gas shell blasted into space when its progenitor star exploded.

But Cass A isn’t expanding evenly, and astronomers think they know why.

Continue reading “Supernova Remnant Cassiopeia A is Lopsided”

A new Kind of Supernova has Been Discovered

Hen 2-427, a Wolf–Rayet star. Credit: ESA/Hubble & NASA, Judy Schmidt

We often think of supernova explosions as inevitable for large stars. Big star runs out of fuel, gravity collapses its core and BOOM! But astronomers have long thought at least one type of large star didn’t end with a supernova. Known as Wolf-Rayet stars, they were thought to end with a quiet collapse of their core into a black hole. But a new discovery finds they might become supernovae after all.

Continue reading “A new Kind of Supernova has Been Discovered”

Astronomers Watch a Star Die and Then Explode as a Supernova

Artist's impression of a supernova. Credit: NASA

It’s another first for astronomy.

For the first time, a team of astronomers have imaged in real-time as a red supergiant star reached the end of its life. They watched as the star convulsed in its death throes before finally exploding as a supernova.

And their observations contradict previous thinking into how red supergiants behave before they blow up.

Continue reading “Astronomers Watch a Star Die and Then Explode as a Supernova”

Nearby Supernovae Were Essential to Life on Earth

Illustration of the Milky Way seen from Earth where supernova accelerates cosmic rays to high energies. Credit: H. Svensmark/DTU Space

It’s almost impossible to comprehend a supernova explosion’s violent, destructive power. An exploding supernova can outshine its host galaxy for a few weeks or even months. That seems almost impossible when considering that a galaxy can contain hundreds of billions of stars. Any planet too close to a supernova would be completely sterilized by all the energy released, its atmosphere would be stripped away, and it may even be shredded into pieces.

But like many things in nature, it all comes down to dose.

A certain amount of supernova activity might be necessary for life to exist.

Continue reading “Nearby Supernovae Were Essential to Life on Earth”

Quick Action Let Hubble Watch the Earliest Stages of an Unfolding Supernova Detonation

Astronomers recently witnessed supernova SN 2020fqv explode inside the interacting Butterfly galaxies, located about 60 million light-years away in the constellation Virgo. Researchers quickly trained NASA's Hubble Space Telescope on the aftermath. Along with other space- and ground-based telescopes, Hubble delivered a ringside seat to the first moments of the ill-fated star's demise, giving a comprehensive view of a supernova in the very earliest stage of exploding. Hubble probed the material very close to the supernova that was ejected by the star in the last year of its life. These observations allowed researchers to understand what was happening to the star just before it died, and may provide astronomers with an early warning system for other stars on the brink of death. Credits: NASA, ESA, Ryan Foley (UC Santa Cruz); Image Processing: Joseph DePasquale (STScI)

If it weren’t for supernova remnants we wouldn’t have much knowledge of supernovae themselves. If a supernova explosion is the end of a star’s life, then we can also thank forensic astrophysics for much of our knowledge. The massive exploding stars leave behind brilliant and mesmerizing evidence of their catastrophic ends, and much of what we know about supernovae comes from studying the remnants rather than the explosions themselves. Supernova remnants like the Crab Nebula and SN 1604 (Kepler’s Supernova) are some of our most-studied objects.

Observing an active supernova in the grip of its own destruction can be difficult. But it looks like the Hubble Space Telescope is up to the task.

Continue reading “Quick Action Let Hubble Watch the Earliest Stages of an Unfolding Supernova Detonation”