Hubble Looks at Newly Forming Stars in a Stellar Nursery

stellar nurseries and jets
The lives of newborn stars are tempestuous, as this image of the Herbig–Haro objects HH 1 and HH 2 from the NASA/ESA Hubble Space Telescope depicts.

When we look at images of star birth regions, they look both placid and active at the same time. That’s nowhere more true than in a stellar nursery associated with a so-called “Herbig-Haro” object. A recent image from Hubble Space Telescope zeroed in on two called “HH 1” and “HH 2”. It looked at the turbulence associated with a nearby newborn star system.

Continue reading “Hubble Looks at Newly Forming Stars in a Stellar Nursery”

Two Stars Orbiting Each Other Every 51 Minutes. This Can’t End Well

An artist’s illustration shows a white dwarf (right) circling a larger, sun-like star (left) in an ultra-short orbit, forming a “cataclysmic” binary system. Credits:Credit: M.Weiss/Center for Astrophysics | Harvard & Smithsonian

We don’t have to worry too much about our Sun. It can burn our skin, and it can emit potent doses of charged material—called Solar storms—that can damage electrical systems. But the Sun is alone up there, making things simpler and more predictable.

Other stars are locked in relationships with one another as binary pairs. A new study found a binary pair of stars that are so close to each other they orbit every 51 minutes, the shortest orbit ever seen in a binary system. Their proximity to one another spells trouble.

Continue reading “Two Stars Orbiting Each Other Every 51 Minutes. This Can’t End Well”

Binary Stars Live Complicated Lives, Especially Near the End

Artist's impression of a red giant star. If the star is in a binary pair, what happens to its sibling? Credit:NASA/ Walt Feimer

We know what will happen to our Sun.

It’ll follow the same path other stars of its ilk follow. It’ll start running out of hydrogen, swell up and cool and turn red. It’ll be a red giant, and eventually, it’ll become so voluminous that it will consume the planets closest to it and render Earth uninhabitable. Then billions of years from now, it’ll create one of those beautiful nebulae we see in Hubble images, and the remnant Sun will be a shrunken white dwarf in the center of the nebula, a much smaller vestige of the luminous body it once was.

This is the predictable life the Sun lives as a solitary star. But what happens to stars that have a solar sibling? How would its binary companion fare?

Continue reading “Binary Stars Live Complicated Lives, Especially Near the End”

Just 2,000 Years Ago, Betelgeuse Was Yellow, Not Red

Artist's impression of Betelgeuse. Credit: ESO/L. Calçada

Compared to the lifespan of stars, human lives are pretty short. Stars such as Betelgeuse (in Orion) live for millions of years. Others exist for billions of years. We (if we’re lucky) get maybe 100 years (more or less). So, to us, stars don’t appear to change much over our lifetimes, unless they blow up as supernovae. But, what about over the course of 20 or 30 successive lifetimes?

Continue reading “Just 2,000 Years Ago, Betelgeuse Was Yellow, Not Red”

Astronomers Find the Oldest Planetary Nebula

Abell 39 is a good example of a planetary nebula, similar to the one discovered in M37. Credit: WIYN/NOAO/NSF

Planetary nebulae are short-lived “leftovers” of sun-like stars. Most of these “star ghosts” only last—at most—about 25,000 years. Usually, their clouds of debris disperse so broadly that they fade out fairly quickly. However, there’s one that has lasted at least 70,000 years. That makes it a “grande dame” of planetary nebulae.

Continue reading “Astronomers Find the Oldest Planetary Nebula”

In Wildly Different Environments, Stars End Up Roughly the Same

stars
Mock narrowband observation of a simulated star-forming region where massive stars destroy their parent cloud. Credit: STARFORGE

When you look at a region of the sky where stars are born, you see a cloud of gas and dust and a bunch of stars. It’s really a beautiful sight. In most places, the stars all end up being about the same mass. That mass is probably the most important factor you want to know about it. It directs how long the star will live and what its future will be like. But, what determines its mass and the mass of its siblings in a stellar nursery? Is there some governing force that tells them how massive they’ll be? It turns out that the stars do it for themselves.

Continue reading “In Wildly Different Environments, Stars End Up Roughly the Same”

Thanks to Gaia we Know Exactly how and When the Sun Will die

How different types of stars live and die. Credit: ESA

Our Sun is doomed. Billions of years from now, the Sun will deplete its hydrogen fuel and swell to a red giant before becoming a white dwarf. It’s a well-known story, and one astronomers have understood for decades. Now, thanks to the latest data from Gaia, we know the Sun’s future in much greater detail.

Continue reading “Thanks to Gaia we Know Exactly how and When the Sun Will die”

A Dormant Black Hole has Been Discovered Just Outside the Milky Way

home of the dormant black hole

What happens when a massive star dies? Conventional wisdom (and observational evidence) say that it can collapse to form a “stellar-mass” black hole. Astronomers detect black holes by the X-ray emissions they emit.

But, what if the black hole isn’t giving off high levels of X-ray emissions? Then, it could be a very rare object indeed: a dormant black hole. Not many of these have been seen. So, it’s exciting to know that a team of astronomers has found one. It’s called VFTS 243. They detected it in Very Large Telescope observations of stars in the Tarantula Nebula, in the neighboring Large Magellanic Cloud.

Continue reading “A Dormant Black Hole has Been Discovered Just Outside the Milky Way”

Red Supergiant Stars Bubble and Froth so Much That Their Position in the Sky Seems to Dance Around

This artist’s impression shows the red supergiant star. Using ESO’s Very Large Telescope Interferometer, an international team of astronomers have constructed the most detailed image ever of this, or any star other than the Sun. Credit: ESO/M. Kornmesser

Making a 3D map of our galaxy would be easier if some stars behaved long enough to get good distances to them. However, red supergiants are the frisky kids on the block when it comes to pinning down their exact locations. That’s because they appear to dance around, which makes pinpointing their place in space difficult. That wobble is a feature, not a bug of these massive old stars and scientists want to understand why.

So, as with other challenging objects in the galaxy, astronomers have turned to computer models to figure out why. In addition, they are using Gaia mission position measurements to get a handle on why red supergiants appear to dance.

Artist’s impression of the red supergiant star Betelgeuse as it was revealed with ESO’s Very Large Telescope. It shows a boiling surface and material shed by the star as it ages. Credit: ESO/L.Calçada
Artist’s impression of the red supergiant star Betelgeuse as it was revealed with ESO’s Very Large Telescope. It shows a boiling surface and material shed by the star as it ages. Credit: ESO/L.Calçada
Continue reading “Red Supergiant Stars Bubble and Froth so Much That Their Position in the Sky Seems to Dance Around”

Astronomers Caught Betelgeuse Just Before it Started Dimming and Might Have Seen a Pressure Wave Rippling Through its Atmosphere

Betelgeuse was the first star directly imaged -- besides our own Sun, of course. Image obtained by the Hubble Space Telescope. Credit: Andrea Dupree (Harvard-Smithsonian CfA), Ronald Gilliland (STScI), NASA and ESA

A couple of years ago, Betelgeuse generated much interest when it started dimming. That caught the attention of astronomers worldwide, who tried to understand what was happening. Was it about to go supernova?

Evidence showed that dust was the most likely culprit for the red supergiant’s dimming, though there are still questions. A new study shows that the star was behaving strangely just before the dimming.

Continue reading “Astronomers Caught Betelgeuse Just Before it Started Dimming and Might Have Seen a Pressure Wave Rippling Through its Atmosphere”