Astronomers See A Dead Star Come Back To Life Thanks To A Donor Star

It’s not exactly an organ donor, but a star in the direction of the hyper-populated core of the Milky Way donating some of its mass to a dormant neighbor. The result? The dormant neighbor sprung back to life with an X-ray burst captured by the ESA‘s INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) space observatory.

“INTEGRAL caught a unique moment in the birth of a rare binary system” – Enrico Bozzo, University of Geneva.

The neighbors have likely been paired together for billions of years, which is not in itself noteworthy: stars often live in binary pairs. But the pair spotted by INTEGRAL on August 13th 2017 is very unusual. The donor star is a red giant, and the recipient is a neutron star. So far, astronomers only know of 10 of these pairs, called ‘symbiotic X-ray binaries’.

To understand what’s happening between these neighbors, we have to look at stellar evolution.

The donor star is in its red giant phase. That’s when a star in the same mass range as our star reaches the later stage of its life. As its mass is depleted, gravity can’t hold the star together in the same way it has for the early part of its life. The star expands outwards by millions of kilometers. As it does so, it sheds stellar material from its outer layers in a solar wind that travels several hundreds of km/sec.

The red giant and the neutron star may have traveled different evolutionary pathways, but proximity made them partners. Image: ESA

Its neighbor is in a different state. It’s a star that had an initial mass of about 25 to 30 times the Sun. When a star this big approaches the end of its life, it suffers a different fate. Stars this large live fast, and burn through their fuel quickly. Then, they explode as supernovae, in this case leaving a corpse behind. In the binary system captured by INTEGRAL, the corpse is a spinning neutron star with a magnetic field.

Neutron stars are dense. In fact, they’re some of the densest stellar objects we know of, packing as much mass as one-and-a-half of our Suns into an object that’s only about 10 km across.
When the red giant’s stellar wind met the neutron star, the neutron star slowed its rate of spin, and burst into life, emitting high-energy x-rays.

“INTEGRAL caught a unique moment in the birth of a rare binary system,” says Enrico Bozzo from University of Geneva and lead author of the paper that describes the discovery. “The red giant released a sufficiently dense slow wind to feed its neutron star companion, giving rise to high-energy emission from the dead stellar core for the first time.”

After INTEGRAL spotted the x-ray burst from the binary, other observations quickly followed. The ESA’s XMM Newton and NASA’s NuSTAR and Swift space telescopes got to work, along with ground-based telescopes. These observations confirmed what initial observations showed: this is a very peculiar pair of stars.

“…we believe we saw the X-rays turning on for the first time.” – Erik Kuulkers, ESA INTEGRAL Project Scientist.

The neutron star spins very slowly, taking about 2 hours to revolve, which is remarkable since other neutron stars can spin many times per second. The magnetic field of the neutron star was also much stronger than expected. But the magnetic field around a neutron star is thought to weaken over time, making this a relatively young neutron star. And a red giant is old, so this is a very odd pairing of old red giant with young neutron star.

One possible explanation is that the neutron star didn’t form from a supernova, but from a white dwarf. In that scenario, the white dwarf would’ve collapsed into a neutron star after a very long period of feeding on material from the red giant. That would explain the disparity in ages of the two stars in the system.

An artist’s illustration of ESA’s INTEGRAL space observatory. INTEGRAL was launched in 2002 to study some of the most energetic phenomena in the universe. Image: ESA.

“These objects are puzzling,” says Enrico. “It might be that either the neutron star magnetic field does not decay substantially with time after all, or the neutron star actually formed later in the history of the binary system. That would mean it collapsed from a white dwarf into a neutron star as a result of feeding off the red giant over a long time, rather than becoming a neutron star as a result of a more traditional supernova explosion of a short-lived massive star.”

The next question is how long will this process go on? Is it short-lived, or the beginning of a long-term relationship?

“We haven’t seen this object before in the past 15 years of our observations with INTEGRAL, so we believe we saw the X-rays turning on for the first time,” says Erik Kuulkers, ESA’s INTEGRAL project scientist. “We’ll continue to watch how it behaves in case it is just a long ‘burp’ of winds, but so far we haven’t seen any significant changes.”

The INTEGRAL space observatory was launched in 2002 to study some of the most energetic phenomena in the universe. It focuses on things like black holes, neutron stars, active galactic nuclei and supernovae. INTEGRAL is a European Space Agency mission in cooperation with the United States and Russia. Its projected end date is December, 2018.

This is the Surface of a Giant Star, 350 Times Larger Than the Sun

When it comes to looking beyond our Solar System, astronomers are often forced to theorize about what they don’t know based on what they do. In short, they have to rely on what we have learned studying the Sun and the planets from our own Solar System in order to make educated guesses about how other star systems and their respective bodies formed and evolved.

For example, astronomers have learned much from our Sun about how convection plays a major role in the life of stars. Until now, they have not been able to conduct detailed studies of the surfaces of other stars because of their distances and obscuring factors. However, in a historic first, an international team of scientists recently created the first detailed images of the surface of a red giant star located roughly 530 light-years away.

The study recently appeared in the scientific journal Nature under the title “Large Granulation cells on the surface of the giant star Π¹ Gruis“. The study was led by Claudia Paladini of the Université libre de Bruxelles and included members from the European Southern Observatory, the Université de Nice Sophia-Antipolis, Georgia State University, the Université Grenoble Alpes, Uppsala University, the University of Vienna, and the University of Exeter.

The surface of the red giant star Π¹ Gruis from PIONIER on the VLT. Credit: ESO

For the sake of their study, the team used the Precision Integrated-Optics Near-infrared Imaging ExpeRiment (PIONIER) instrument on the ESO’s Very Large Telescope Interferometer (VLTI) to observe the star known as Π¹ Gruis. Located 530 light-years from Earth in the constellation of Grus (The Crane), Π1 Gruis is a cool red giant. While it is the same mass as our Sun, it is 350 times larger and several thousand times as bright.

For decades, astronomers have sought to learn more about the convection properties and evolution of stars by studying red giants. These are what become of main sequence stars once they have exhausted their hydrogen fuel and expand to becomes hundreds of times their normal diameter. Unfortunately, studying the convection properties of most supergiant stars has been challenging because their surfaces are frequently obscured by dust.

After obtaining interferometric data on Π1 Gruis in September of 2014, the team then relied on image reconstruction software and algorithms to compose images of the star’s surface. These allowed the team to determine the convection patterns of the star by picking out its “granules”, the large grainy spots on the surface that indicate the top of a convective cell.

This was the first time that such images have been created, and represent a major breakthrough when it comes to our understanding of how stars age and evolve. As Dr. Fabien Baron, an assistant professor at Georgia State University and a co-author on the study, explained:

“This is the first time that we have such a giant star that is unambiguously imaged with that level of details. The reason is there’s a limit to the details we can see based on the size of the telescope used for the observations. For this paper, we used an interferometer. The light from several telescopes is combined to overcome the limit of each telescope, thus achieving a resolution equivalent to that of a much larger telescope.”

Earth scorched by red giant Sun
Artist’s impression of the Earth scorched by our Sun as it enters its Red Giant Branch phase. Credit: Wikimedia Commons/Fsgregs

This study is especially significant because Π1 Gruis in the last major phase of life and resembles what our Sun will look like when it is at the end of its lifespan. In other words, when our Sun exhausts its hydrogen fuel in roughly five billion years, it will expand significantly to become a red giant star. At this point, it will be large enough to encompass Mercury, Venus, and maybe even Earth.

As a result, studying this star will give scientists insight into the future activity, characteristics and appearance of our Sun. For instance, our Sun has about two million convective cells that typically measure 2,000 km (1243 mi) in diameter. Based on their study, the team estimates that the surface of Π1 Gruis has a complex convective pattern, with granules measuring about 1.2 x 10^8 km (62,137,119 mi) horizontally or 27 percent of the diameter of the star.

This is consistent with what astronomers have predicted, which was that giant and supergiant stars should only have a few large convective cells because of their low surface gravity. As Baron indicated:

“These images are important because the size and number of granules on the surface actually fit very well with models that predict what we should be seeing. That tells us that our models of stars are not far from reality. We’re probably on the right track to understand these kinds of stars.”

An illustration of the structure of the Sun and a red giant star, showing their convective zones. These are the granular zones in the outer layers of the stars. Credit: ESO

The detailed map also indicated differences in surface temperature, which were apparent from the different colors on the star’s surface. This are also consistent with what we know about stars, where temperature variations are indicative of processes that are taking place inside. As temperatures rise and fall, the hotter, more fluid areas become brighter (appearing white) while the cooler, denser areas become darker (red).

Looking ahead, Paladini and her team want to create even more detailed images of the surface of giant stars. The main aim of this is to be able to follow the evolution of these granules continuously, rather than merely getting snapshots of different points in time.

From these and similar studies, we are not only likely to learn more about the formation and evolution of different types of stars in our Universe; we’re also sure to get a better understanding of what our Solar System is in for.

 

Further Reading: Georgia State University, ESO, Nature

New Study of Antares Creates the Best Map Ever of a Distant Star

When stars exhaust their supply of hydrogen fuel, they exit the main sequence phase of their evolution and enter into what is known as the Red Giant Branch (RGB) phase. This is characterized by the stars expanding significantly and becoming tens of thousands of times larger than our Sun. They also become dimmer and cooler, which lends them a reddish-orange appearance (hence the name).

Recently, a team of astronomers used the ESO’s Very Large Telescope Interferometer (VLTI) to map one such star, the red supergiant Antares. In so doing, they were able to create the most detailed map of a star other than our Sun. The images they took also revealed some unexpected things about this supergiant star, all of which could help astronomers to better understand the dynamics and evolution of red giant stars.

The study which details their work, titled “Vigorous Atmospheric Motions in the Red Supergiant Supernova Progenitor Antares“, recently appeared in the journal Nature. As indicated in the study, the team – which was led by Keiichi Ohnaka, an associate professor at the UCN Institute of Astronomy in Chile = relied on the VLTI at the ESO’s Paranal Observatory in Chile to map Antares’s surface and measure the motions of its surface material.

Artist’s impression of the red supergiant star Antares, located 550 ly away in the constellation of Scorpius. Credit: ESO/M. Kornmesser

The purpose of their study was to chart how stars that have entered their RGB phase begin to change. The VLTI is uniquely suited to this task, since it is capable of combining light from four different telescopes – the 8.2-metre Unit Telescopes, or the smaller Auxiliary Telescopes – to create one virtual telescope that has the resolution of a telescope lens measuring 200 meters across.

This allows the VLTI to resolve fine details far beyond what can be seen with a single telescope. As Prof. Ohnaka explained in a recent ESO press statement:

How stars like Antares lose mass so quickly in the final phase of their evolution has been a problem for over half a century. The VLTI is the only facility that can directly measure the gas motions in the extended atmosphere of Antares — a crucial step towards clarifying this problem. The next challenge is to identify what’s driving the turbulent motions.”

For their study, the team relied on three of the VLTI Auxiliary Telescopes and an instrument called the Astronomical Multi-BEam combineR (AMBER). This near-infrared spectro-interferometric instrument combines three telescopic beams coherently, allowing astronomers to measure the visibilities and closure phases of stars. Using these instruments, the team obtained images of Antares’ surface over a small range of infrared wavelengths.

From these, the team was able to calculate the difference between the speed of atmospheric gas at different locations on Antares’ surface, as well as its average speed over the entire surface. This resulted in a two-dimensional velocity map of Antares, which is the first such map created of another star other than the Sun. As noted, it is also the most-detailed map of any star beyond our Solar System to date.

The study also made some interesting discoveries of what takes place on Antares’ surface and in its atmosphere. For example, they found evidence for high-speed upwellings of gas that reached distances of up to 1.7 Solar radii into space – much farther than previously thought. This, they claimed, could not be explained by convection alone, the process whereby cold material moves downwards and hot material upwards in a circular pattern.

This process occurs on Earth in the atmosphere and with ocean currents, but it is also responsible for moving pockets of hotter and colder gas around within stars. The fact that convection cannot explain the behavior of Antares extended atmosphere would therefore suggests that some new and unidentified process common to red giant stars must be responsible.

These results therefor offer new opportunities for research into stellar evolution, which is made possible thanks to next-generation instruments like the VTLI. As Ohnaka concluded:

“In the future, this observing technique can be applied to different types of stars to study their surfaces and atmospheres in unprecedented detail. This has been limited to just the Sun up to now. Our work brings stellar astrophysics to a new dimension and opens an entirely new window to observe stars.”

Not only is this kind of research improving our understanding of stars beyond our Solar System, it lets us know what to expect when our Sun exits it main sequence phase and begins expanding to become a red giant. Though that day is billions of years away and we can’t be certain humanity will even be around by that time, knowing the mechanics of stellar evolution is important to our understanding of the Universe.
It pays to know that even after we are gone, we can predict what will still be here and for how long. Be sure to check out this 3D animation of Antares, courtesy of the ESO:

Further Reading: ESO, Nature

This is Kind of Sad. Astronomers Find a Failed Star Orbiting a Dead Star

Death is simply a part of life, and this is no less the case where stars and other astronomical objects are concerned. Sure, the timelines are much, much greater where these are concerned, but the basic rule is the same. Much like all living organism, stars eventually reach old age and become white dwarfs. And some are not even fortunate enough to be born, instead becoming a class of failed stars known as brown dwarfs.

Despite being familiar with these objects, astronomers were certainly not expecting to find examples of both in a single star system! And yet, according to a new study, that is precisely what an international team of astronomers discovered when looked at WD 1202-024. Using data from the Kepler space telescope, they spotted a binary system consisting of a failed star (a brown dwarf) and the remnant of a star (a white dwarf).

The team which made the discovery consisted of researchers from the Kavli Institute for Astrophysics and Space Research at MIT, the Harvard-Smithsonian Center for Astrophysics (CfA), the Exoplanet Research Institute (iREx) and NASA’s Ames Research Center. The study that describes their findings, titled “WD 1202-024: The Shortest-Period Pre-Cataclysmic Variable“, was recently published in the Monthly Notices of the Royal Astronomical Society.

Artist’s impression of a T-type brown dwarf. Credit: Tyrogthekreeper under a Wikimedia Commons Attribution-Share Alike 3.0 Unported license

Originally, the white dwarf was identified by the Sloan Digital Sky Survey (SDSS) – designated as WD1202-024 – and was thought to be a solitary star. However, while examining the light-curves of stars that had been surveyed by the K2 mission, Dr. Saul Rappaport (M.I.T.) and Andrew Vanderburg (of the CfA) – the lead author and a co-authors on the study, respectively – noted a curious drop in its brightness.

Whereas the transits of exoplanets are known to cause small dips in brightness, the light curve in this case showed particularly deep and broad eclipses. In addition, between these eclipses, there were changes in brightness which appeared to be due to the cool component (i.e. the brown dwarf) being illuminated by the much hotter white dwarf. This too was unexpected, as it indicated that the transiting object was rather large.

To get to the bottom of this, the team devised a model based on data obtained from K2 mission, the SDSS survey and the Magellan 6.5-m telescope. They also used data from five different ground-based telescopes on three continents, which included amateur-operated 36-cm and 80-cm telescopes in Arizona, the 1-m telescope at the South African Astronomical Observatory, and the 1.6-m telescope at Mont-Megantic Observatory (‘OMM’) in Quebec.

From this combined data, they were able to deduce that their observations were consistent with a hot white dwarf of 0.4 Solar masses being eclipsed by brown dwarf companion of 0.067 Solar masses. They also determined that these two objects, which are seen nearly edge-on, orbited each other with a period of just 71 minutes and 12 seconds – which works out to a speed of about 100 km/s.

The lightcurve picked up by the K2 mission (black line), with a geometrical model to emulate an illumination effect on the companion star (red line), while the blue line is the fit to the model based on the length of the K2 observations.. Credit: UBishop

But as Lorne Nelson – a professor at Bishop’s University and one of the co-authors on the paper – explained, the team also wanted to address how this system came to be. “We had constructed a robust model but we still had to address the ‘big-picture’ issues such as how this system formed and what would be its ultimate fate,” he said.

To do this, they used sophisticated computer models to simulate the formation and evolution of WD1202. According to their scenario, the primordial system consisted of a 1.25 Solar mass star and a brown dwarf that were in a 150 day orbit with each other. As the star aged, it began to expand, becoming a red giant that eventually pulled its brown dwarf companion into a much tighter orbit.

They also constructed a 3-D animation to illustrate the effect this had. As Nelson described it:

“It is similar to an egg-beater effect. The brown dwarf spirals in towards the center of the red giant and causes most of the mass of the red giant to be lifted off of the core and to be expelled. The result is a brown dwarf in an extraordinarily tight, short-period orbit with the hot helium core of the giant. That core then cools and becomes the white dwarf that we observe today.”

In addition, their calculations showed that the primordial binary must have formed about 3 billion years ago, and that in less than 250 million years, the white dwarf will begin cannibalizing the brown dwarf. At this point, the brown dwarf is likely to be pulled apart and form a circumstellar disk around the white dwarf, which it will slowly accrete material from.

Artist’s impression of the star in its multi-million year long and previously unobservable phase as a large, red supergiant. Credit: CAASTRO / Mats Björklund (Magipics)

When this happens, the binary will begin showing the signs of a cataclysmic variable (CV), which include a flickering lightcurve. And in the end, it is likely that the entire system will go out in a fiery cataclysm – aka. a type 1a supernova. It should also be noted that this 250 year period is the shortest pre-cataclysmic variable of any binary system ever discovered, making this find even more of a rarity.

So perhaps the find was not so sad after all. Yes, a failed star is orbiting a star in its death throes, but its important to remember they were not always this way. At one time, WD 1202-024 was a vital star that was orbited by a super-heavy gas giant. Only in approaching death did the two become so tight in their orbits, and the perfect picture of failed stardom and near-stellar-death. And in time, they will come together to produce a cataclysmic explosion. I think we can all agree, its best to go out with a bang!

The findings of this study were presented at a press conference last week (on Tuesday, June 6th, 2017) at the 230th Meeting of the American Astronomical Society.

Further Reading: Bishop’s University, MNRAS

Chance Discovery Of A Three Hour Old Supernova

Supernovae are extremely energetic and dynamic events in the universe. The brightest one we’ve ever observed was discovered in 2015 and was as bright as 570 billion Suns. Their luminosity signifies their significance in the cosmos. They produce the heavy elements that make up people and planets, and their shockwaves trigger the formation of the next generation of stars.

There are about 3 supernovae every 100 hundred years in the Milky Way galaxy. Throughout human history, only a handful of supernovae have been observed. The earliest recorded supernova was observed by Chinese astronomers in 185 AD. The most famous supernova is probably SN 1054 (historic supernovae are named for the year they were observed) which created the Crab Nebula. Now, thanks to all of our telescopes and observatories, observing supernovae is fairly routine.

The supernova that produced the Crab Nebula was detected by naked-eye observers around the world in 1054 A.D. This composite image uses data from NASA’s Great Observatories, Chandra, Hubble, and Spitzer, to show that a superdense neutron star is energizing the expanding Nebula by spewing out magnetic fields and a blizzard of extremely high-energy particles. The Chandra X-ray image is shown in light blue, the Hubble Space Telescope optical images are in green and dark blue, and the Spitzer Space Telescope’s infrared image is in red. The size of the X-ray image is smaller than the others because ultrahigh-energy X-ray emitting electrons radiate away their energy more quickly than the lower-energy electrons emitting optical and infrared light. The neutron star is the bright white dot in the center of the image.
The supernova that produced the Crab Nebula was detected by naked-eye observers around the world in 1054 A.D. This composite image uses data from NASA’s Great Observatories, Chandra, Hubble, and Spitzer.

But one thing astronomers have never observed is the very early stages of a supernova. That changed in 2013 when, by chance, the automated Intermediate Palomar Transient Factory (IPTF) caught sight of a supernova only 3 hours old.

Spotting a supernovae in its first few hours is extremely important, because we can quickly point other ‘scopes at it and gather data about the SN’s progenitor star. In this case, according to a paper published at Nature Physics, follow-up observations revealed a surprise: SN 2013fs was surrounded by circumstellar material (CSM) that it ejected in the year prior to the supernova event. The CSM was ejected at a high rate of approximately 10 -³ solar masses per year. According to the paper, this kind of instability might be common among supernovae.

SN 2013fs was a red super-giant. Astronomers didn’t think that those types of stars ejected material prior to going supernova. But follow up observations with other telescopes showed the supernova explosion moving through a cloud of material previously ejected by a star. What this means for our understanding of supernovae isn’t clear yet, but it’s probably a game changer.

Catching the 3-hour-old SN 2013fs was an extremely lucky event. The IPTF is a fully-automated wide-field survey of the sky. It’s a system of 11 CCD’s installed on a telescope at the Palomar Observatory in California. It takes 60 second exposures at frequencies from 5 days apart to 90 seconds apart. This is what allowed it to capture SN 2013fs in its early stages.

The 48 inch telescope at the Palomar Observatory. The IPTF is installed on this telescope. Image: IPTF/Palomar Observatory

Our understanding of supernovae is a mixture of theory and observed data. We know a lot about how they collapse, why they collapse, and what types of supernovae there are. But this is our first data point of a SN in its early hours.

SN 2013fs is 160 million light years away in a spiral-arm galaxy called NGC7610. It’s a type II supernova, meaning that it’s at least 8 times as massive as our Sun, but not more than 50 times as massive. Type II supernovae are mostly observed in the spiral arms of galaxies.

A supernova is the end state of some of the stars in the universe. But not all stars. Only massive stars can become supernova. Our own Sun is much too small.

Stars are like dynamic balancing acts between two forces: fusion and gravity.

As hydrogen is fused into helium in the center of a star, it causes enormous outward pressure in the form of photons. That is what lights and warms our planet. But stars are, of course, enormously massive. And all that mass is subject to gravity, which pulls the star’s mass inward. So the fusion and the gravity more or less balance each other out. This is called stellar equilibrium, which is the state our Sun is in, and will be in for several billion more years.

But stars don’t last forever, or rather, their hydrogen doesn’t. And once the hydrogen runs out, the star begins to change. In the case of a massive star, it begins to fuse heavier and heavier elements, until it fuses iron and nickel in its core. The fusion of iron and nickel is a natural fusion limit in a star, and once it reaches the iron and nickel fusion stage, fusion stops. We now have a star with an inert core of iron and nickel.

Now that fusion has stopped, stellar equilibrium is broken, and the enormous gravitational pressure of the star’s mass causes a collapse. This rapid collapse causes the core to heat again, which halts the collapse and causes a massive outwards shockwave. The shockwave hits the outer stellar material and blasts it out into space. Voila, a supernova.

The extremely high temperatures of the shockwave have one more important effect. It heats the stellar material outside the core, though very briefly, which allows the fusion of elements heavier than iron. This explains why the extremely heavy elements like uranium are much rarer than lighter elements. Only large enough stars that go supernova can forge the heaviest elements.

In a nutshell, that is a type II supernova, the same type found in 2013 when it was only 3 hours old. How the discovery of the CSM ejected by SN 2013fs will grow our understanding of supernovae is not fully understood.

Supernovae are fairly well-understood events, but their are still many questions surrounding them. Whether these new observations of the very earliest stages of a supernovae will answer some of our questions, or just create more unanswered questions, remains to be seen.

Bright Binocular Nova Discovered in Lupus

The possible nova in Lupus photographed on Sept. 25 from Australia. Credit: Joseph Brimacombe
The possible nova in Lupus photographed on Sunday, Sept. 25 from Australia. The star is now bright enough to see in binoculars for observers in the far southern U.S. and points south. Credit: Joseph Brimacombe

On September 20, a particular spot in the constellation Lupus the Wolf was blank of any stars brighter than 17.5 magnitude. Four nights later, as if by some magic trick, a star bright enough to be seen in binoculars popped into view. While we await official confirmation, the star’s spectrum, its tattle-tale rainbow of light, indicates it’s a nova, a sun in the throes of a thermonuclear explosion.

A bright possible nova was discovered only days ago near the 3rd magnitude star Epsilon Lupi. It shot from fainter than magnitude +17.5 to its current magnitude +6.8 in just four nights ... and it's still rising. The nova is bright enough to see in binoculars for observers in the far southern U.S., where it's visible low in the southwestern sky in late evening twilight. This map shows the sky facing southwest about an hour after sunset from Key West, Florida, latitude 24.5 degrees north. Source: Stellarium
The nova was discovered on Sept. 23 near the 3rd magnitude star Epsilon Lupi. It rose from fainter than magnitude +17.5 to its current magnitude +6.8 in just four nights … and it’s still rising. It’s visible low in the southwestern sky in late evening twilight low northern latitudes, the tropics and southern hemisphere. This map shows the sky facing southwest about an hour after sunset from Key West, Florida, latitude 24.5 degrees north. Source: Stellarium

The nova, dubbed ASASSN-16kt for now, was discovered during the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or “Assassin”), using data from the quadruple 14-cm “Cassius” telescope in CTIO, Chile. Krzysztof  Stanek and team reported the new star in Astronomical Telegram #9538. By the evening of September 23 local time, the object had risen to magnitude +9.1, and it’s currently +6.8. So let’s see — that’s about an 11-magnitude jump or a 24,000-fold increase in brightness! And it’s still on the rise.

Use this chart with binoculars to help you find the likely nova. The field of view is about 5 degrees with north up. The "new star" lies between a bright triangle of stars to the east and the naked-eye star Epsilon Lupi to the west. Stars are labeled with magnitudes. Chart: Bob King,  Source: Stellarium
Use this chart with binoculars to help you find the likely nova. The field of view is about 5 degrees with north up. The “new star” lies between a bright triangle of stars to the east and the naked-eye star Epsilon Lupi to the west. Stars are labeled with magnitudes. Chart: Bob King, Source: Stellarium

The star is located at R.A. 15h 29?, –44° 49.7? in the southern constellation Lupus the Wolf. Even at this low declination, the star would clear the southern horizon from places like Chicago and further south, but in late September Lupus is low in the southwestern sky. To see the nova you’ll need a clear horizon in that direction and observe from the far southern U.S. and points south. If you’ve planned a trip to the Caribbean or Hawaii in the coming weeks, your timing couldn’t have been better!

Novae occur in close binary systems where one star is a tiny but extremely compact white dwarf star. The dwarf pulls material into a disk around itself, some of which is funneled to the surface and ignites in a nova explosion. Credit: NASA
Novae occur in close binary systems where one star is a tiny but extremely compact white dwarf star. The dwarf draws material into a disk around itself, some of which is funneled to the surface and ignites in a nova explosion. Credit: NASA

I’ve drawn the map for Key West, one of southernmost locations on the U.S. mainland, where the nova stands about 7-8° high in late twilight, but you might also see it from southern Texas and the bottom of Arizona if you stand on your tippytoes. Other locales include northern Africa, Finding a good horizon is key. Observers across Central and South America, Africa, India, s. Asia and Australia, where the star is higher up in the western sky at nightfall, are favored.

Nova means “new”, but a nova isn’t a brand new star coming to life but rather an explosion that occurs on the surface of an otherwise faint star no one’s taken notice of – until the blast causes it to brighten 50,000 to 100,000 times.

You can use this AAVSO chart to find the nova and track its changing brightness. Star magnitudes are shown to the tenth with the decimal omitted. Credit: AAVSO
You can use this AAVSO chart to find the nova and track its changing brightness. Star magnitudes are shown to the tenth with the decimal omitted. Click to enlarge. Credit: AAVSO

A nova occurs in a close binary star system, where a small but extremely dense and massive (for its size) white dwarf siphons hydrogen gas from its closely-orbiting companion. After whirling around in a flattened accretion disk around the dwarf, the material gets funneled down to the star’s 150,000 F° surface where gravity compacts and heats the gas until it detonates in a titanic thermonuclear explosion. Suddenly, a faint star that wasn’t on anyone’s radar vaults a dozen magnitudes to become a standout “new star”.

Novae are relatively rare and almost always found in the plane of the Milky Way, where the stars are most concentrated. The more stars, the greater the chances of finding one in a nova outburst. Roughly a handful a year are discovered, many of those in Scorpius and Sagittarius, in the direction of the galactic bulge.

We’ll keep tabs on this new object and report back with more information and photos as they become available. You can follow the new celebrity as well as print out finder charts on the American Association of Variable Star Observers (AAVSO) website by typing ASASSN-16kt in the info boxes.

I sure wish I wasn’t stuck in Minnesota right now or I’d be staring down the wolf’s new star!

A History Of Violence: Iron Found in Fossils Suggests Supernova Role In Mass Dying

Space and events that transpire there directly affect our lives and those of our remote ancestors. Credit: Bob King
Space and events that transpire there directly affect our lives and those of our remote ancestors including early humans who walked the planet two million years ago. Credit: Bob King

Outer space touches us in so many ways. Meteors from ancient asteroid collisions and dust spalled from comets slam into our atmosphere every day, most of it unseen. Cosmic rays ionize the atoms in our upper air, while the solar wind finds crafty ways to invade the planetary magnetosphere and set the sky afire with aurora. We can’t even walk outside on a sunny summer day without concern for the Sun’s ultraviolet light burning out skin.

So perhaps you wouldn’t be surprised that over the course of Earth’s history, our planet has also been affected by one of the most cataclysmic events the universe has to offer: the explosion of a supergiant star in a Type II supernova event. After the collapse of the star’s core, the outgoing shock wave blows the star to pieces, both releasing and creating a host of elements. One of those is iron-60. While most of the iron in the universe is iron-56, a stable atom made up of 26 protons and 30 neutrons, iron-60 has four additional neutrons that make it an unstable radioactive isotope.

Crab Nebula from NASA's Hubble Space Telescope
The Crab Nebula, shown here in this image from NASA’s Hubble Space Telescope, is the expanding cloud of gas and dust left after a massive star exploded as a supernova in 1054. Supernovae propel a star’s innards back into space while creating new radioactive isotopes such as iron-60. Credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)

If a supernova occurs sufficiently close to our Solar System, it’s possible for some of the ejecta to make its way all the way to Earth. How might we detect these stellar shards? One way would be to look for traces of unique isotopes that could only have been produced by the explosion. A team of German scientists did just that. In a paper published earlier this month in the Proceedings of the National Academy of Sciences, they report the detection of iron-60 in biologically produced nanocrystals of magnetite in two sediment cores drilled from the Pacific Ocean.

Magnetite is an iron-rich mineral naturally attracted to a magnet just as a compass needle responds to Earth’s magnetic field. Magnetotactic bacteria, a group of bacteria that orient themselves along Earth’s magnetic field lines, contain specialized structures called magnetosomes, where they store tiny magnetic crystals – primarily as magnetite (or greigite, an iron sulfide) in long chains. It’s thought nature went to all this trouble to help the creatures find water with the optimal oxygen concentration for their survival and reproduction. Even after they’re dead, the bacteria continue to align like microscopic compass needles as they settle to the bottom of the ocean.

These are transmission electron microscope images showing tiny magnetofossils left by bacteria about 2.5 million years ago.
These are transmission electron microscope images showing tiny magnetofossils containing iron-60, a form of iron produced during the violent explosion and death of a massive star in a supernova. They were deposited by bacteria in sediments found on the floor of the Pacific Ocean. Click for more details. Credit: courtesy Marianne Hanzlik, Chemie Department, FG Elektronenmikroskopie, Technische Universität München

After the bacteria die, they decay and dissolve away, but the crystals are sturdy enough to be preserved as chains of magnetofossils that resemble beaded garlands on the family Christmas tree. Using a mass spectrometer, which teases one molecule from another with killer accuracy, the team detected “live” iron-60 atoms in the fossilized chains of magnetite crystals produced by the bacteria. Live meaning still fresh. Since the half-life of iron-60 is only 2.6 million years, any primordial iron-60 that seeded the Earth in its formation has long since disappeared. If you go digging around now and find iron-60, you’re likely looking at at a supernova as the smoking gun.

Co-authors Peter Ludwig and Shawn Bishop, along with the team, found that the supernova material arrived at Earth about 2.7 million years ago near the boundary of the Pleistocene and Pliocene epochs and rained down for all of 800,000 years before coming to an end around 1.7 million years ago. If ever a hard rain fell.

Reconstruction of Homo habilis at the Westfälisches Museum für Archäologie. Credit: Lillyundfreya / Wikipedia
Reconstruction of Homo habilis at the Westfälisches Museum für Archäologie. Credit: Lillyundfreya / Wikipedia

The peak concentration occurred about 2.2 million years ago, the same time our early human ancestors, Homo habilis, were chipping tools from stone. Did they witness the appearance of a spectacularly bright “new star” in the night sky? Assuming the supernova wasn’t obscured by cosmic dust, the sight must have brought our bipedal relations to their knees.

There’s even a possibility that an increase in cosmic rays from the event affected our atmosphere and climate and possibly led to a minor die-off at the time. Africa’s climate dried out and repeated cycles of glaciation became common as global temperatures continued their cooling trend from the Pliocene into the Pleistocene.

Cosmic rays strike our atmosphere all the time, but their energy is spent creating showers of secondary, less energetic particles. Credit: Simon Swordy, University of Chicago, NASA
Cosmic rays strike our atmosphere all the time, but their energy is spent striking atoms to create showers of secondary, less energetic particles, a few of which sometimes make it to the ground. Credit: Simon Swordy, University of Chicago, NASA

Cosmic rays, which are extremely fast-moving, high-energy protons and atomic nucleic, rip up molecules in the atmosphere and can even penetrate down to the surface during a nearby supernova explosion, within about 50 light years of the Sun. The high dose of radiation would put life at risk, while at the same time providing a surge in the number of mutations, one of the creative forces driving the diversity of life over the history of our planet. Life — always a story of taking the good with the bad.

The discovery of iron-60 further cements our connection to the universe at large. Indeed, bacteria munching on supernova ash adds a literal twist to the late Carl Sagan’s famous words: “The cosmos is within us. We are made of star-stuff.” Big or small, we owe our lives to the synthesis of elements within the bellies of stars.

Cooking Up Life in the Cosmic Kitchen

Ever burnt meat or grilled chicken till the skin was crisp? In the process, the meats released PAHs, complex molecules composed of carbon (shown here at "C") and hydrogen ("H"). This ball-and-stick figure represents benzo[a]pyrene, a PAH commonly produced when cooking food or burning wood has 20 carbon atoms and a dozen hydrogens. Credit: Dennis Bogdan with additions by the author
Ever burnt meat or grilled chicken till the skin was crisp? If you have, you’ve made some PAHs. Overcooked meats, burning wood and automobile exhaust release PAHs, complex molecules composed of carbon (shown here at “C”) and hydrogen (“H”). This ball-and-stick figure represents benzo[a]pyrene, a PAH commonly produced when cooking food or burning wood has 20 carbon atoms and a dozen hydrogens. Credit: Dennis Bogdan with additions by the author
Kitchens are where we create. From crumb cake to corn on the cob, it happens here. If you’re like me, you’ve occasionally left a turkey too long in the oven or charred the grilled chicken. When meat gets burned, among the smells informing your nose of the bad news are flat molecules consisting of carbon atoms arranged in a honeycomb pattern called PAHs or polycyclic aromatic hydrocarbons.

PAHs make up about 10% of the carbon in the universe and are not only found in your kitchen but also in outer space, where they were discovered in 1998. Even comets and meteorites contain PAHs. From the illustration, you can see they’re made up of several to many interconnected rings of carbon atoms arranged in different ways to make different compounds. The more rings, the more complex the molecule, but the underlying pattern is the same for all.

Both simple and complex organic (carbon-containing) molecules have been found in space. Carbon is formed in the cores of red giant stars, where it gets cycled to the surface and dispensed into space. Credit: IAC; original image of the Helix Nebula (NASA, NOAO, ESA, the Hubble Helix Nebula Team, M. Meixner, STScI, & T.A. Rector, NRAO
Both simple and complex organic (carbon-containing) molecules have been found in space. Carbon is formed in the cores of red giant stars, where it gets cycled to the surface and dispensed into space. Credit: IAC; original image of the Helix Nebula (NASA, NOAO, ESA, the Hubble Helix Nebula Team, M. Meixner, STScI, & T.A. Rector, NRAO

All life on Earth is based on carbon. A quick look at the human body reveals that 18.5% of it is made of that element alone. Why is carbon so crucial? Because it’s able to bond to itself and a host of other atoms in a variety of ways to create a lots of complex molecules that allow living organisms to perform many functions. Carbon-rich PAHs may even have been involved in the evolution of life since they come in many forms with potentially many functions. One of those may have been to encourage the formation of RNA (partner to the “life molecule” DNA).

In the continuing quest to learn how simple carbon molecules evolve into more complex ones and what role those compounds might play in the origin of life, an international team of researchers have focused NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) and other observatories on PAHs found within the colorful Iris Nebula in the northern constellation Cepheus the King.

Combination of three color images of NGC 7023 from SOFIA (red & green) and Spitzer (blue) show different populations of PAH molecules. Credits: NASA/DLR/SOFIA/B. Croiset, Leiden Observatory, and O. Berné, CNRS; NASA/JPL-Caltech/Spitzer
This photo is a combination of three infrared color images of the Iris Nebula (NGC 7023) from SOFIA (red & green) and Spitzer (blue) that shows different types of PAH molecules in different parts of the nebula. Credits: NASA/DLR/SOFIA/B. Croiset, Leiden Observatory, and O. Berné, CNRS; NASA/JPL-Caltech/Spitzer

Bavo Croiset of Leiden University in the Netherlands and team determined that when PAHs in the nebula are hit by ultraviolet radiation from its central star, they evolve into larger, more complex molecules. Scientists hypothesize that the growth of complex organic molecules like PAHs is one of the steps leading to the emergence of life.

Strong UV light from a newborn massive star like the one that sets the Iris Nebula aglow would tend to break down large organic molecules into smaller ones, rather than build them up, according to the current view. To test this idea, researchers wanted to estimate the size of the molecules at various locations relative to the central star.

The research team used a telescope on board NASA's SOFIA Observatory, a modified Boeing 747, to fly high above most of the water vapor in the atmosphere to get a better view of PAHs in the Iris Nebula. Credit: NASA
The research team used a telescope on board NASA’s SOFIA Observatory, a modified Boeing 747, to fly high above most of the water vapor in the atmosphere to get a better view of PAHs in the Iris Nebula in infrared light. Credit: NASA

Croiset’s team used SOFIA to get above most of the water vapor in the atmosphere so he could observe the nebula in infrared light, a form of light invisible to our eyes that we detect as heat. SOFIA’s instruments are sensitive to two infrared wavelengths that are produced by these particular molecules, which can be used to estimate their size. The team analyzed the SOFIA images in combination with data previously obtained by the Spitzer infrared space observatory, the Hubble Space Telescope and the Canada-France-Hawaii Telescope on the Big Island of Hawaii.

The analysis indicates that the size of the PAH molecules in this nebula vary by location in a clear pattern. The average size of the molecules in the nebula’s central cavity surrounding the young star is larger than on the surface of the cloud at the outer edge of the cavity. They also got a surprise: radiation from the star resulted in net growth in the number of complex PAHs rather than their destruction into smaller pieces.

A view of the Iris Nebula in normal or visible light showing the bright, young central star. Light from the star illuminates clouds of gas and dust that show the nebula's flower-like shape. Credit: Hunter Wilson
A view of the Iris Nebula in normal or visible light showing the bright, young central star. Light from the star illuminates clouds of gas and dust that show the nebula’s flower-like shape. Credit: Hunter Wilson

In a paper published in Astronomy and Astrophysics, the team concluded that this molecular size variation is due both to some of the smallest molecules being destroyed by the harsh ultraviolet radiation field of the star, and to medium-sized molecules being irradiated so they combine into larger molecules.

So much starts with stars. Not only do they create the carbon atoms at the foundation of biology, but it would appear they shepherd them into more complex forms, too. Truly, we can thank our lucky stars!

The Closest Supernova Since 1604 Is Hissing At Us

Thirty years ago, a star that went by the designation of SN 1987A collapsed spectacularly, creating a supernova that was visible from Earth. This was the largest supernova to be visible to the naked eye since Kepler’s Supernova in 1604. Today, this supernova remnant (which is located approximately 168,000 light-years away) is being used by astronomers in the Australian Outback to help refine our understanding of stellar explosions.

Led by a student from the University of Sydney, this international research team is observing the remnant at the lowest-ever radio frequencies. Previously, astronomers knew much about the star’s immediate past by studying the effect the star’s collapse had on the neighboring Large Magellanic Cloud. But by detecting the star’s faintest hisses of radio static, the team was able to observe a great deal more of its history.

The team’s findings, which were published yesterday in the journal Monthly Notices of the Royal Astronomical Society, detail how the astronomers were able to look millions of years farther back in time. Prior to this, astronomers could only observe a tiny fraction of the star’s life cycle before it exploded – 20,000 years (or 0.1%) of its multi-million year life span.

Artist’s impression of the star in its multi-million year long and previously unobservable phase as a large, red supergiant. Credit: CAASTRO / Mats Björklund (Magipics)
Artist’s impression of the star in its multi-million year long and previously unobservable phase as a large, red supergiant. Credit: CAASTRO / Mats Björklund (Magipics)

As such, they were only able to see the star when it was in its final, blue supergiant phase. But with the help of the Murchison Widefield Array (MWA) – a low-frequency radio telescope located at the Murchison Radio-astronomy Observatory (MRO) in the West Australian desert – the radio astronomers were able to see all the way back to when the star was still in its long-lasting red supergiant phase.

In so doing, they were able to observe some interesting things about how this star behaved leading up to the final phase in its life. For instance, they found that SN 1987A lost its matter at a slower rate during its red supergiant phase than was previously assumed. They also observed that it generated slower than expected winds during this period, which pushed into its surrounding environment.

Joseph Callingham, a PhD candidate with the University of Sydney and the ARC Center of Excellence for All-Sky Astrophysics (CAASTRO), is the leader of this research effort. As he stated in a recent RAS press release:

“Just like excavating and studying ancient ruins that teach us about the life of a past civilization, my colleagues and I have used low-frequency radio observations as a window into the star’s life. Our new data improves our knowledge of the composition of space in the region of SN 1987A; we can now go back to our simulations and tweak them, to better reconstruct the physics of supernova explosions.”

Aerial photograph of the core region of the MWA telescope. Credit: mwatelescope.org
Aerial photograph of the core region of the MWA telescope. Credit: mwatelescope.org

The key to finding this new information was the quiet and (some would say) temperamental conditions that the MWA requires to do its thing. Like all radio telescopes, the MWA is located in a remote area to avoid interference from local radio sources, not to mention a dry and elevated area to avoid interference from atmospheric water vapor.

As Professor Gaensler – the former CAASTRO Director and the supervisor of the project – explained, such methods allow for impressive new views of the Universe. “Nobody knew what was happening at low radio frequencies,” he said, “because the signals from our own earthbound FM radio drown out the faint signals from space. Now, by studying the strength of the radio signal, astronomers for the first time can calculate how dense the surrounding gas is, and thus understand the environment of the star before it died.”

These findings will likely help astronomers to understand the life cycle of stars better, which will come in handy when trying to determine what our Sun has in store for us down the road. Further applications will include the hunt for extra-terrestrial life, with astronomers being able to make more accurate estimates on how stellar evolution could effect the odds of life forming in different star systems.

In addition to being home to the MWA, the Murchison Radio-astronomy Observatory (MRO) is also the planned site of the future Square Kilometer Array (SKA). The MWA is one of three telescopes – along with the South African MeerKAT array and the Australian SKA Pathfinder (ASKAP) array – that are designated as a Precursor for the SKA.

Further Reading: Royal Astronomical Society

Nearby Supernovas Showered Earth With Iron

We all know that we are “made of star-stuff,” with all of the elements necessary for the formation of planets and even life itself having originated inside generations of massive stars, which over billions of years have blasted their creations out into the galaxy at the explosive ends of their lives. Supernovas are some of the most powerful and energetic events in the known Universe, and when a dying star finally explodes you wouldn’t want to be anywhere nearby—fresh elements are nice and all but the energy and radiation from a supernova would roast any planets within tens if not hundreds of light-years in all directions. Luckily for us we’re not in an unsafe range of any supernovas in the foreseeable future, but there was a time geologically not very long ago that these stellar explosions are thought to have occurred in nearby space… and scientists have recently found the “smoking gun” evidence at the bottom of the ocean.

Two independent teams of “deep-sea astronomers”—one led by Dieter Breitschwerdt from the Berlin Institute of Technology and the other by Anton Wallner from the Australian National University—have investigated sediment samples taken from the floors of the Pacific, Atlantic, and Indian oceans. The sediments were found to contain relatively high levels of iron-60, an unstable isotope specifically created during supernovas.

The Local Bubble is a 300-light-year long region that was carved out of the interstellar medium by supernovas (Source: Science@NASA)
The Local Bubble is a 300-light-year long region that was carved out of the interstellar medium by supernovas (Source: [email protected])

Watch: How Quickly Does a Supernova Happen?

The teams found that the ages of the iron-60 concentrations (the determination of which was recently perfected by Wallner) centered around two time periods, 1.7 to 3.2 million years ago and 6.5 to 8.7 million years ago. Based on this and the fact that our Solar System currently resides within a peanut-shaped region virtually empty of interstellar gas known as the Local Bubble, the researchers are confident that this provides further evidence that supernovas exploded within a mere 330 light-years of Earth, sending their elemental fallout our way.

“This research essentially proves that certain events happened in the not-too-distant past,” said Adrian Melott, an astrophysicist and professor at the University of Kansas who was not directly involved with the research but published his take on the findings in a letter in Nature. (Source)

The researchers think that two supernova events in particular were responsible for nearly half of the iron-60 concentrations now observed. These are thought to have taken place among a a nearby group of stars known as the Scorpius–Centaurus Association, some 2.3 and 1.5 million years ago. At those same time frames Earth was entering a phase of repeated global glaciation, the end of the last of which led to the rise of modern human civilization.

While supernovas of those sizes and distances wouldn’t have been a direct danger to life here on Earth, could they have played a part in changing the climate?

Read more: Could a Faraway Supernova Threaten Earth?

“Our local research group is working on figuring out what the effects were likely to have been,” Melott said. “We really don’t know. The events weren’t close enough to cause a big mass extinction or severe effects, but not so far away that we can ignore them either. We’re trying to decide if we should expect to have seen any effects on the ground on the Earth.”

Regardless of the correlation, if any, between ice ages and supernovas, it’s important to learn how these events do affect Earth and realize that they may have played an important and perhaps overlooked role in the history of life on our planet.

“Over the past 500 million years there must have been supernovae very nearby with disastrous consequences,” said Melott. “There have been a lot of mass extinctions, but at this point we don’t have enough information to tease out the role of supernovae in them.”

You can find the teams’ papers in Nature here and here.

Sources: IOP PhysicsWorld and the University of Kansas

 

UPDATE 4/14/16: The presence of iron-60 from the same time periods as those mentioned above has also been found on the Moon by research teams in Germany and the U.S. Read more here.