There’s No Chemical Difference Between Stars With or Without Planets

Strange New Worlds

Imagine if a star could tell you it had planets. That would be really helpful because finding planets orbiting distant stars – exoplanets – is hard. We found Neptune, the most distant planet in our own solar system, in 1846. But we didn’t have direct evidence of a planet around ANOTHER star until….1995.…149 years later. Think about that. Any science fiction you watched or read that was written before 1995 which depicted travel to exoplanets assumed that other planets even existed. Star Trek: The Next Generation aired its last season in 1994. We didn’t even know if Vulcan was out there. (Now we do!…sortof)

Jupiter (right bright point) and Saturn (left bright point) seen here against the Milky Way were the most distant planets we could see before inventing telescopes – C. Matthew Cimone
Continue reading “There’s No Chemical Difference Between Stars With or Without Planets”

1 in 10 Red Giants are Covered in Spots, and They Rotate Surprisingly Quickly

Sunspots are common on our Sun. These darker patches are cooler than their surroundings, and they’re caused by spikes in magnetic flux that inhibit convection. Without convection, those areas cool and darken.

Lots of other stars have sunspots, too. But Red Giants (RGs) don’t. Or so astronomers thought.

A new study shows that some RGs do have spots, and that they rotate faster than thought.

Continue reading “1 in 10 Red Giants are Covered in Spots, and They Rotate Surprisingly Quickly”

Stars Like Our Sun Become Lithium Factories as They Die

In the beginning, the big bang created three elements: hydrogen, helium, and lithium. But it only produced a trace of lithium. For every lithium atom created, the big bang produced about 10 billion hydrogen atoms, and 3 billion helium atoms. The ratio of primordial elements is one of the triumphs of the big bang model. It predicts the ratio of hydrogen (H) and helium (4He) perfectly, and even works for the ratios of other isotopes, such as deuterium (2H) and helium-3 (3He). But it doesn’t work for lithium, and we aren’t sure why.

Continue reading “Stars Like Our Sun Become Lithium Factories as They Die”

This is a Binary Star in the Process of Formation

About 460 light years away lies the Rho Ophiuchi cloud complex. It’s a molecular cloud—an active star-forming region—and it’s one of the closest ones. R. Ophiuchi is a dark nebula, a region so thick with dust that the visible light from stars is almost completely obscured.

But scientists working with ALMA have pin-pointed a pair of young proto-stars inside all that dust, doing the busy work of becoming active stars.

Continue reading “This is a Binary Star in the Process of Formation”

Much of the Lithium Here on Earth Came from Exploding White Dwarf Stars

The Big Bang produced the Universe’s hydrogen, helium, and a little lithium. Since then, it’s been up to stars (for the most part) to forge the rest of the elements, including the matter that you and I are made of. Stars are the nuclear forges responsible for creating most of the elements. But when it comes to lithium, there’s some uncertainty.

A new study shows where much of the lithium in our Solar System and our galaxy comes from: a type of stellar explosion called classical novae.

Continue reading “Much of the Lithium Here on Earth Came from Exploding White Dwarf Stars”

Super-Supernova Released Ten Times More Energy than a Regular Supernova

It’s easy to run out of superlatives and adjectives when your puny human language is trying to describe humongously-energetic events in the Universe. So now it’s down to this: a really powerful supernova is a “super-supernova.”

But whatever name we give it, it’s a monster. A monsternova.

Continue reading “Super-Supernova Released Ten Times More Energy than a Regular Supernova”