Thermal Modeling of a Pulsed Plasma Rocket Shows It Should Be Possible To Create One

We’ve reported on a technology called pulsed plasma rockets (PPRs) here at UT a few times. Several research groups have worked on variations of them. They are so popular partly because of their extremely high specific impulse and thrust levels, and they seemingly solve the trade-off between those two all-important variables in space exploration propulsion systems. Essentially, they are an extremely efficient propulsion methodology that, if scaled up, would allow payloads to reach other planets in weeks rather than months or years. However, some inherent dangers still need to be worked out, and overcoming some of those dangers was the purpose of a NASA Institute for Advanced Concepts (NIAC) project back in 2020. 

Continue reading “Thermal Modeling of a Pulsed Plasma Rocket Shows It Should Be Possible To Create One”

China Tests an All-Solid Rocket

The launch of Gravity-1 from a modified cargo ship.
The Gravity-1 rocket blasts off, Haiyang, east China's Shandong Province, January 11, 2024. /CFP

China has a rich history in rocketry. It’s even found its place into Chinese legends with the wonderful tale of Wang Tu, who allegedly strapped himself to a chair adorned with rockets to experiment with rocket flight. The story goes that he launched and was never seen again! More recently however, a Chinese company has claimed to have launched the ‘World’s most powerful solid rocket’ capable of producing 600 tonnes of thrust and carrying 6,500kg into low Earth orbit. 

Continue reading “China Tests an All-Solid Rocket”

A Self-Eating Engine Could Make Rockets More Efficient

There can’t be many ideas that beat the crazy yet ingenious idea of a rocket engine that uses part of the fuselage for fuel! Typically a rocket will utilise multiple stages so that excess weight can be jettisoned allowing the rocket to be as efficient as possible. Now a team in Scotland is working on a rocket engine that consumes part of its body to use as fuel, reducing weight and providing even more thrust so that greater payloads can be used. 

Continue reading “A Self-Eating Engine Could Make Rockets More Efficient”

ESA Gives Us a Glimpse of its Future Space Exploration Plans with a Cool New Video

Image credit: ESA

The European Space Agency (ESA) has made incredible contributions to space exploration and space-based science. Last year, the agency launched the Euclid space telescope, which will survey the Universe back to 3 billion years after the Big Bang to measure cosmic expansion and the influence of Dark Energy. After more than a decade of development, the Ariane 6 launch vehicle conducted its first full-scale dress rehearsal, which included an engine fire test. In a recent video, the ESA showcased its plans for the future, which include some new launch vehicles and engine technology.

Continue reading “ESA Gives Us a Glimpse of its Future Space Exploration Plans with a Cool New Video”

Photonic Crystals Could Be Exactly What Breakthrough Starshot is Looking For

Could a solar-sail-like structure (or structures) tethered to an asteroid provide a sunshade for Earth to block sunlight and mitigate climate change? A recent study looks into it. Courtesy NASA.
Could a solar-sail-like structure (or structures) tethered to an asteroid provide a sunshade for Earth to block sunlight and mitigate climate change? A recent study looks into it. Courtesy NASA.

Light sail technology is a fascinating concept and a step change in rocket propulsion.  It may not be big and impressive like the Saturn V, the Space Shuttle or the new Starship rocket but when it comes to travelling among the stars, light sails could just be the answer. And what better material to build the sails from then something that just makes me want to say it over and over again….I talk about photonics crystals. It’s sounds right out of a Star Trek episode but a new paper examines their feasibility. 

Continue reading “Photonic Crystals Could Be Exactly What Breakthrough Starshot is Looking For”

NASA Tests a 3D Printed Aluminum Rocket Nozzle

The RAMFIRE nozzle performs a hot fire test at Marshall’s East test area stand 115. Credit: NASA

When it comes to the current era of space exploration, one of the most important trends is the way new technologies and processes are lowering the cost of sending crews and payloads to space. Beyond the commercial space sector and the development of retrievable and reusable rockets, space agencies are also finding new ways to make space more accessible and affordable. This includes NASA, which recently built and tested an aluminum rocket engine nozzle manufactured using their new Reactive Additive Manufacturing for the Fourth Industrial Revolution (RAMFIRE) process.

Continue reading “NASA Tests a 3D Printed Aluminum Rocket Nozzle”

Reusable Rockets Could Fly Back to Their Launch Sites With Wings

The two architectures (top to bottom), "fly-back" and "glide-back" configurations. Credit: Balesdant, M., et al. (2023)

Reusable launch vehicles have been a boon for the commercial space industry. By recovering and refurbishing the first stages of rockets, launch providers have dramatically reduced the cost of sending payloads and even crew to space. Beyond first-stage boosters, there are efforts to make rockets entirely reusable, from second stages to payload fairings. There are currently multiple strategies for booster recovery, including mid-air retrieval using helicopters and nets. Still, the favored method involves boosters returning to a landing pad under their own power (the boost-back and landing maneuver).

This strategy requires additional rocket propellant for the booster to land again, which comes at the expense of payload mass and performance for the ascent mission. As an alternative, researchers from the National Office Of Aerospace Studies And Research (ONERA) propose two new types of strategies that would allow boosters to return to their launch site. These are known as “glide-back” and “fly-back” architectures, both of which involve boosters with lifting surfaces (fins and wings) performing vertical takeoff and horizontal landing (VTVL) maneuvers.

Continue reading “Reusable Rockets Could Fly Back to Their Launch Sites With Wings”

China is Trying to Stop its Boosters From Randomly Crashing Into Villages

Chang'e-5 launch
China's Long March 5 rocket sends the Chang'e-5 probe on the first leg of its mission to the moon and back. (CNSA / CLEP Photo)

China’s space program has advanced by leaps and bounds in a relatively short time. However, it has suffered some bad publicity in recent years due to certain “uncontrolled reentries” (aka. crashes). On multiple occasions, spent first stages have fallen back to Earth, posing a potential threat to populated areas and prompting backlash from NASA and the ESA, who claimed China was taking “unnecessary risks.” To curb the risk caused by spent first stages, China has developed a parachute system that can guide fallen rocket boosters to predetermined landing zones.

According to the Chinese Academy of Launch Vehicle Technology (CALT), which developed the system, the system was successfully tested on a Long March-3B (CZ-3B) rocket on Friday, June 9th. As they indicated in their statement, a review of the test data and an in-situ analysis of the debris showed that the parachute system helped narrow the range of the landing area by 80%. This could help pave the way for future parachute landing control technology applications, which could allow for controlled reentry, retrieval, and even reusability.

Continue reading “China is Trying to Stop its Boosters From Randomly Crashing Into Villages”

ULA Test Fires its New Vulcan Rocket

The United Launch Alliance (ULA) Vulcan Certification-1 (Cert-1) rocket performs the Flight Readiness Firing FRF) at Space Launch Complex-41 at Cape Canaveral Space Force Station. Credit: ULA

United Launch Alliance (ULA) is the oldest commercial space company in the U.S., with over 150 consecutive launches to its credit. For almost two decades, the company has been providing launch services using the expendable Delta II, Delta IV, and Atlas V rockets. Faced with growing competition and political pressure, ULA began working on a new heavy-launch vehicle, the Vulcan rocket, in 2014. Once realized, this rocket will allow the ULA to remain competitive in the burgeoning NewSpace market and meet the needs of the National Security Space Launch (NSSL).

On June 7th, the first stage of the Vulcan successfully test-fired its two Blue Origin BE-4 engines at Space Launch Complex 41 (SLC-41) at the Cape Canaveral Space Force Station (CCSFS) in Florida. The success of this test, designated Certification-1 (Cert-1), places the ULA on track to launch test its next-generation heavy-launch vehicle. Once realized, the Vulcan rocket will provide services ranging from the deployment of small satellites and payloads to reusable crewed spacecraft, like Boeing’s CST-100 Starliner space capsule and Sierra Nevada’s Dream Chaser spaceplane.

Continue reading “ULA Test Fires its New Vulcan Rocket”

Three New Astronauts Arrive at the Chinese Space Station, Including the Country's First Civilian

Artist's rendering of the completed Tiangong space station. Credit: Shujianyang/Wikimedia

China continues to establish new milestones in space. In recent years, the China National Space Agency (CNSA) has begun assembling the Long March-9 (CZ-9), the country’s first reusable super-heavy launch vehicle; the Tianwen-1 mission became the first Chinese orbiter, lander, and rover combination to reach Mars, and their super-secret spaceplane completed its second flight (after spending 276 days in space). China has also made significant progress in terms of human spaceflight, especially where the Tiangong space station is concerned.

Earlier this week (Tues. May 30th), the China Manned Space Agency (CMSA) took another major step when it launched the country’s sixteenth mission (Shenzou-16) to Tiangong atop a Long March-2F (CZ-2F) rocket. This mission delivered three taikonauts to the space station and performed the most complicated docking maneuver ever attempted. The mission highlights included successfully testing the Shenzou’s upgraded instruments and systems, which allowed the spacecraft to autonomously rendezvous with the station under less-than-ideal conditions.

Continue reading “Three New Astronauts Arrive at the Chinese Space Station, Including the Country's First Civilian”