Ring System Around Pluto?

HST Image of Pluto-Charon system. Also shown are Nix and Hydra. Image Credit: NASA/ESA

[/caption]

With the New Horizons spacecraft on its way to Pluto, there may be an intriguing additional task for the mission’s science team: look for a potential ring around Pluto and its moons. Researchers at The Universidade Estadual Paulista in Brazil have recently submitted a paper for publication in which they explore the possibility of a ring system around the Pluto-Charon system.  In their paper, the team discusses the effects of micrometeoroid impacts on Nix and Hydra and how the resulting dust particles could form a ring around Pluto.  The team also investigates forces, such as the solar wind, which would dissipate said ring system.


Pryscilla Maria Pires dos Santos and her team provide an exhaustive list of calculations in their paper which estimates the ring system to have a diameter of nearly 16,000 kilometers – well outside the orbits of Nix and Hydra.  Based on their calculations, Pires dos Santos state that despite nearly 50% of the ring’s mass being dissipated within a year, a tenuous ring system can be maintained by the dust expelled by micrometeoroid impacts.

Additional data presented in the paper places the rings “optical depth” as being several orders of magnitude fainter than even Jupiter’s rings. (Yes, Jupiter has a ring system!)  While ground-based observatories and even the Hubble Space Telescope haven’t detected the ring system Pires dos Santos et al. are hopeful that the New Horizons mission will provide data to validate their theoretical models. New Horizons has a dust counter capable of measuring dust grains with a minimum mass of 10-12 grams, which should provide the data required to support or refute the team’s models.

Pires dos Santos mentions: “It is worth to point out that the interplanetary environment in the outer Solar System is not well known. Many assumptions have to be made in order to estimate a normal optical depth of a putative ring encompassing the orbits of Nix and Hydra.

If you’d like to read the full paper, you can access it  (for free) at: http://arxiv.org/PS_cache/arxiv/pdf/1108/1108.0712v1.pdf

Source: arXiv:1108.0712v1 [astro-ph.EP]

Hubble Telescope Spots Another Moon Around Pluto

[/caption]

From a NASA press release:

Astronomers using the Hubble Space Telescope discovered a fourth moon orbiting the icy dwarf planet Pluto. The tiny, new satellite – temporarily designated P4 — was uncovered in a Hubble survey searching for rings around the dwarf planet.

The new moon is the smallest discovered around Pluto. It has an estimated diameter of 8 to 21 miles (13 to 34 km). By comparison, Charon, Pluto’s largest moon, is 648 miles (1,043 km) across, and the other moons, Nix and Hydra, are in the range of 20 to 70 miles in diameter (32 to 113 km).

“I find it remarkable that Hubble’s cameras enabled us to see such a tiny object so clearly from a distance of more than 3 billion miles (5 billion km),” said Mark Showalter of the SETI Institute in Mountain View, Calif., who led this observing program with Hubble.

The finding is a result of ongoing work to support NASA’s New Horizons mission, scheduled to fly through the Pluto system in 2015. The mission is designed to provide new insights about worlds at the edge of our solar system. Hubble’s mapping of Pluto’s surface and discovery of its satellites have been invaluable to planning for New Horizons’ close encounter.

“This is a fantastic discovery,” said New Horizons’ principal investigator Alan Stern of the Southwest Research Institute in Boulder, Colo. “Now that we know there’s another moon in the Pluto system, we can plan close-up observations of it during our flyby.”

The new moon is located between the orbits of Nix and Hydra, which Hubble discovered in 2005. Charon was discovered in 1978 at the U.S. Naval Observatory and first resolved using Hubble in 1990 as a separate body from Pluto.

Illustration of the Pluto Satellite System orbits with newly discovered moon P4 highlighted. Credit: NASA, ESA, and A. Feild (STScI)

The dwarf planet’s entire moon system is believed to have formed by a collision between Pluto and another planet-sized body early in the history of the solar system. The smashup flung material that coalesced into the family of satellites observed around Pluto.

Lunar rocks returned to Earth from the Apollo missions led to the theory that our moon was the result of a similar collision between Earth and a Mars-sized body 4.4 billion years ago. Scientists believe material blasted off Pluto’s moons by micrometeoroid impacts may form rings around the dwarf planet, but the Hubble photographs have not detected any so far.

“This surprising observation is a powerful reminder of Hubble’s ability as a general purpose astronomical observatory to make astounding, unintended discoveries,” said Jon Morse, astrophysics division director at NASA Headquarters in Washington.

P4 was first seen in a photo taken with Hubble’s Wide Field Camera 3 on June 28. It was confirmed in subsequent Hubble pictures taken on July 3 and July 18. The moon was not seen in earlier Hubble images because the exposure times were shorter. There is a chance it appeared as a very faint smudge in 2006 images, but was overlooked because it was obscured.

For more images and information, see the HubbleSite.

Double Occultations This Week Will Reveal More Details About Pluto

Several teams of astronomers are taking advantage of a rare double event this week to learn more about the atmosphere and makeup of Pluto and its moons. The dwarf planet will occult, or pass in front of two different stars this week. One of the best viewing sites for these two events is in Hawaii, and eclipse-chaser Dr. Jay Pasachoff is there to record both events. “To see those occultations, we have to be in a particular set of places on Earth, those over which the shadow of the object in starlight passes,” Pasachoff wrote in a guest post on the Planet Hunters blog. “Since the stars are so far away, their light is essentially parallel and the shadows of the objects on Earth are the same as the sizes of the objects.”

If all goes well, we will know a lot more about the Pluto system, Pasachoff said.

Map of where the occultation would be visible on June 22-23, 2011.

Last night, June 22/23, both Pluto and its moon Charon occulted a magnitude 14.4 star, with each occultation lasting a minute or so and separated from each other by 12 minutes. “The event is particularly exciting because if we capture both Pluto and Charon nearly simultaneously, we can find out about the system’s internal orbits with higher precision than before, perhaps allowing a refinement of the center of mass and thus the masses and densities of each object,” Pasachoff said.

Also, the first deployment for an occultation of the NASA/German SOFIA observatory took place last night to view the Pluto occultation, flying at an altitude of 43,000 feet off the west coast of Central America.

“The scientific goal is to catch the ‘central flash,’ which conveys vital information about conditions in Pluto’s global atmosphere,” wrote American Astronomical Society press officer Rick Fienberg on Twitter. Fienberg was part of the press corps that was accompanying the flight.

On Sunday/Monday night, June 26/27, Pluto will occult a different star, and over a much narrower path, its small moon Hydra might also occult another star.

Pasachoff said that the most recent predictions for last night’s occulations shifted the prediction south, so that Hawaii is slightly off the main predicted path, to its north. But other teams are in Cairns, Australia, to see if it goes that far south.

For the June 26/27 event (June 27 UT but June 26 in Hawaii), the star is magnitude 13.6. “That is a couple of magnitudes brighter than most of the stars we have observed being occulted,” Pasachoff said, “so the data would be particularly low-noise. In addition to the occultation of Pluto itself, whose southern limit is predicted to pass through the Hawaiian islands, the tiny Pluto moon Hydra is to be occulted, though that narrow path’s prediction now passes north of the Hawaiian islands. We have arranged for telescopes in Yunnan, China, in Japan, Taiwan, and Thailand to observe with us, and MIT’s Matt Lockhart is en route to Yunnan with one of our POETS (Portable Occultation, Eclipse, and Transit System) cameras. We have Australian sites still observing as well, just in case the actual path is hundreds of kilometers south of the predictions.”

Earlier occultations by Pluto studied by Pasachoff and his colleagues showed that Pluto’s atmosphere was warming and that the atmosphere would probably remain warm enough by 2015 for the New Horizons spacecraft to detect and study it with its on-board instruments, and was part of the incentive for the mission to launch when it did.

To learn more about the occultations and the research, check out this main stellar occultation website from Williams College, where Pasachoff is located, which has links to the work of other researchers as well.

Maps and details of the predictions can be found here, and more details about Pluto occultations websites can be found here.

We’ll try to provide an update of the events when details become available.

You can follow Universe Today senior editor Nancy Atkinson on Twitter: @Nancy_A. Follow Universe Today for the latest space and astronomy news on Twitter @universetoday and on Facebook.

More Surprises From Pluto

Artist's illustration of Pluto's surface. Credit: NASA

[/caption]

Ah, Pluto. Seems every time we think we’ve got it figured out, it has a new surprise to throw at us.

First spotted in 1930 by a young Clyde Tombaugh, for 76 years it enjoyed a comfortable position as the solar system’s most distant planet. Then a controversial decision in 2006 by the International Astronomical Union, spurred by suggestions from astronomer (and self-confessed “planet-killer”) Mike Brown*, relegated Pluto to a new class of worlds called “dwarf planets”. Not quite planets and not quite asteroids, dwarf planets cannot entirely clear their orbital path with their own gravitational force and thus miss out on full planetary status. Besides immediately making a lot of science textbooks obsolete and rendering the handy mnemonic “My Very Eager Mother Just Served Us Nine Pies” irrelevant (or at least confusing), the decision angered many people around the world, both in and out of the scientific community. Pluto is a planet, they said, it always has been and always will be! Save Pluto! the schoolkids wrote in crayon to planetarium directors. The world all of a sudden realized how much people liked having Pluto as the “last” planet, and didn’t want to see it demoted by decision, especially a highly contested one.

Yet as it turns out, Pluto really may not be a planet after all.

It may be a comet.

But…that’s getting ahead of ourselves. First things first.

Discovery data showing carbon monoxide spectrum. Credit: J.S. Greaves / Joint Astronomy Centre.

Recent discoveries by a UK team of astronomers points to the presence of carbon monoxide in Pluto’s atmosphere. Yes, Pluto has an atmosphere; astronomers have known about it since 1988. At first assumed to be about 100km thick, it was later estimated to extend out about 1500km and be composed of methane gas and nitrogen. This gas would expand from the planet’s – er, dwarf planet’s – surface as it came closer to the Sun during the course of its eccentric 248-year orbit and then freeze back onto the surface as it moved further away. The new findings from the University of St Andrews team, made by observations with the James Clerk Maxwell telescope in Hawaii, identify an even thicker atmosphere containing carbon monoxide that extends over 3000 km, reaching nearly halfway to Pluto’s largest moon, Charon.

It’s possible that this carbon monoxide atmosphere may have expanded outwards from Pluto, especially in the years since 1989 when it made the closest approach to the Sun in its orbit. Surface heating (and the term “heating” is used scientifically here…remember, at around -240ºC (-400ºF) Pluto would seem anything but balmy to us!) by the Sun’s radiation would have warmed the surface and expelled these gases outwards. This also coincides with observations made by the Hubble Space Telescope over the course of four years, which revealed varying patterns of dark and light areas on Pluto’s surface – possibly caused by the thawing of frozen areas that shift and reveal lighter surface material below.

“Seeing such an example of extra-terrestrial climate-change is fascinating. This cold simple atmosphere that is strongly driven by the heat from the Sun could give us important clues to how some of the basic physics works, and act as a contrasting test-bed to help us better understand the Earth’s atmosphere.”

–  Dr. Jane Greaves, Team Leader

In fact, carbon monoxide may be the key to why Pluto even still has an atmosphere. Unlike methane, which is a greenhouse gas, carbon monoxide acts as a coolant; it may be keeping Pluto’s fragile atmosphere from heating up too much and escaping into space entirely! Over the decades and centuries that it takes for Pluto to complete a single year, the balance between these two gases must be extremely precise.

Read more about this discovery on the Royal Astronomical Society’s site.

Pluto's elliptical orbit

So here we have Pluto exhibiting an expanding atmosphere of thawing expelled gas as it gets closer to the Sun in an elliptical, eccentric orbit. (Sound familiar?) And now there’s another unusual, un-planet-like feature that’s being put on the table: Pluto may have a tail.

Actually this is an elaboration of the research results coming from the same team at the University of St Andrews. The additional element here is a tiny redshift detected in the carbon monoxide signature, indicating that it is moving away from us in an unusual way. It’s possible that this could be caused by the top layers of Pluto’s atmosphere – where the carbon monoxide resides – being blown back by the solar wind into, literally, a tail.

That sounds an awful lot, to this particular astronomy reporter anyway, like a comet.

Just saying.

Anyway, regardless of what Pluto is or isn’t, will be called or used to be called, there’s no denying that it is a fascinating little world that deserves our attention. (And it will be getting plenty of that come July 2015 when the New Horizons spacecraft swings by for a visit!) I’m sure there’s no one here who would argue that fact.

New Horizons’ upcoming visit will surely answer many questions about Pluto – whatever it is – and most likely raise even more.

 

Artist's impression of Pluto's huge atmosphere of carbon monoxide.Credit:P.A.S. Cruickshank.

The new discovery was presented by team leader Dr. Jane Greaves on Wednesday, April 20 at the National Astronomy Meeting in Wales.

Article reference: arxiv.org/abs/1104.3014: Discovery Of Carbon Monoxide In The Upper Atmosphere Of Pluto

 

*No disrespect to Mr. Brown intended…he was just performing science as he saw fit!

 

 

Clyde Tombaugh’s Ten Special Commandments for Planet Hunters

The Ten Special Commandments for a Would-Be Planet Hunter, according to Clyde Tombaugh. Scan courtesy of Toney Burkhart.

[/caption]

Back in 1989, amateur astronomer Toney Burkhart found out that Clyde Tombaugh was going to be giving a talk in San Francisco, just a short distance from Burkhart’s home. Trouble was, he found out only about 10 minutes before the presentation was going to start, so he rushed over and arrived just in time to hear Tombaugh’s talk, where he told amusing stories of how he found Pluto, and what he went through with night after night in a cold observatory taking photographs and comparing the glass plates, looking for a planet in the outer solar system. Then Tombaugh shared read his version of the Ten Commandments, called, “Ten Special Commandments for a Would-Be Planet Hunter.”


Afterward, the posters of the Commandments were being sold as a fund raising event.

“Clyde was going around the country to raise money for scholarships for young people to study planetary science,” Burkhart told Universe Today. “There were a lot of people there in the lobby buying posters autographed by Clyde Tombaugh and I wanted one very much.”

However, when Burkhart went to purchase one, he discovered that in his haste to leave his home, he had forgotten his billfold.

“I waited until everything was over and thought that I would at least go over and say hi to Clyde and tell him how much I thought of his hard work and to shake his hand, at least,” Burkhart said, and Tombaugh was more than happy to chat with an fellow astronomy enthusiast.

“While I was chatting with Clyde, I told him that I wish I brought money to buy one of the posters. He looked at me and smiled and said, ‘Well, that’s alright.’” And I said no, I really would have bought one if I had not ran out of the house and forgot my billfold. He was holding his notes and I asked him, what are you going to do with those notes, throw them away?”

Burkhart said Tombaugh smiled and replied that he couldn’t give away his notes, as he had more talks to give, but said he could mail them to Burkhart after his tour was over.

Burkhart offered to send Tombaugh a check later, or at least pay for postage, but Tombaugh looked at him and said, “No, that’s OK, I see you are really into astronomy and it would be my pleasure to give it you.”

Grateful, Burkhart asked if Tombaugh could autograph it, not for Burkhart but for his son Jason. Tombaugh took Burkhart’s address, and true to his word, about a month later Burkhart received Tombaugh’s personal version of the Commandments, with corrections made in pen, (the corrections were made by Tombaugh’s wife, Patricia, Burkhart said) along with his autograph. “I have them in safekeeping to leave to my son to have and hopefully give them to his kids,” Burkhart said.

Here are the the Ten Special Commandments for a Would-Be Planet Hunter, according to Clyde Tombaugh

1. Behold the heavens and the great vastness thereof, for a planet could be anywhere therein.

2. Thou shalt dedicate thy whole being to the search project with infinite patience and perseverance.

3. Though shalt set no other work before thee for the search shall keep thee busy enough.

4. Though shalt take the plates at opposition time lest thou be deceived by asteroids near their stationary positions.

5. Though shalt duplicate the plate of a pair at the same hour angle lest refraction distortions overtake thee.

6. Thou shalt give adequate overlap of adjacent plate regions lest the planet play hide and seek with thee.

7. Thou must not become ill in the dark of the moon lest thou fall behind the opposition point.

8. Thou shalt have no dates except at full moon when long exposure plates cannot be taken at the telescope.

9. Many false planets shall appear before thee, hundreds of them, and thou shalt check every one with a third plate.

10. Thou shalt not engage in any dissipation, that thy years may be many for thou shalt need them to finish the job!

Clyde W. Tombaugh
14 March 1989

Burkhart shared the scan of Tombaugh’s notes on his Facebook page.

h/t to Charles Bell.

New Horizons Flies by Uranus

An 'overhead' view of New Horizons' location. Credit: NASA

The Pluto-bound New Horizons spacecraft will fly by another planet today (March 18, 2011). However, the robotic craft won’t be taking any images as it zooms past Uranus’ orbit at about 6 p.m. EDT, 3.8 billion kilometers (2.4 billion miles) away from the gas giant (and 2.0 billion km (1.8 billion miles) from Earth). New Horizons is currently in hibernation mode, and the great distance from Uranus means any observations wouldn’t provide much as far as data and images. But, even so, this event is a ‘landmark’ so to speak in New Horizon’s gauntlet across the solar system.

“New Horizons is all about delayed gratification, and our 9 1/2-year cruise to the Pluto system illustrates that,” said Principal Investigator Alan Stern, of the Southwest Research Institute. “Crossing the orbit of Uranus is another milepost along our long journey to the very frontier of exploration.”

[/caption]

New Horizons is now well over halfway through its journey to Pluto. Motoring along at 57,900 km/hr (36,000 mph), it will travel more than 4.8 billion km (3 billion miles) to fly past Pluto and its moons Nix, Hydra and Charon in July 2015.

But the journey doesn’t end there. After that, New Horizons will head off to a post-Pluto encounter with other objects within the Kuiper Belt, some event(s) which might take place even into the 2020’s. The planetary science community is working on the selection of potential targets.

The mission still has more than 4 years to go to get to Pluto; it will take 9 nine months to send all the data back to Earth.

The next planetary milestone for New Horizons will be the orbit of Neptune, which it crosses on Aug. 25, 2014, exactly 25 years after Voyager 2 made its historic exploration of that giant planet.

“This mission is a marathon,” says Project Manager Glen Fountain, of the Johns Hopkins University Applied Physics Laboratory. “The New Horizons team has been focused on keeping the spacecraft on course and preparing for Pluto. So far, so good, and we are working to keep it that way.”

Source: New Horizons

First-Time Solar System Mosaic From the Inside Out

MESSENGER's new solar system portrait, from the inside out

[/caption]

Say cheese! The MESSENGER spacecraft has captured the first portrait of our Solar System from the inside looking out. The images, captured Nov. 3 and 16, 2010, were snapped with the Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) of MESSENGER’s Mercury Dual Imaging System (MDIS).

All of the planets are visible except for Uranus and Neptune, which at distances of 3.0 and 4.4 billion kilometers were too faint to detect with even the longest camera exposure time of 10 seconds. Their positions are indicated. The dwarf-planet Pluto, smaller and farther away, would have been even more difficult to observe.

Earth’s Moon and Jupiter’s Galilean satellites (Callisto, Ganymede, Europa, and Io) can be seen in the NAC image insets. Our Solar System’s perch on a spiral arm provided a beautiful view of part of the Milky Way galaxy, bottom center.

The following is a graphic showing the positions of the planets when the graphic was acquired:

The new mosaic provides a complement to the Solar System portrait – that one from the outside looking in – taken by Voyager 1 in 1990.

These six narrow-angle color images were made from the first ever 'portrait' of the solar system taken by Voyager 1, which was more than 4 billion miles from Earth and about 32 degrees above the ecliptic. The spacecraft acquired a total of 60 frames for a mosaic of the solar system which shows six of the planets. Mercury is too close to the sun to be seen. Mars was not detectable by the Voyager cameras due to scattered sunlight in the optics, and Pluto was not included in the mosaic because of its small size and distance from the sun. These blown-up images, left to right and top to bottom are Venus, Earth, Jupiter, and Saturn, Uranus, Neptune. The background features in the images are artifacts resulting from the magnification. The images were taken through three color filters -- violet, blue and green -- and recombined to produce the color images. Jupiter and Saturn were resolved by the camera but Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposure times. Earth appears to be in a band of light because it coincidentally lies right in the center of the scattered light rays resulting from taking the image so close to the sun. Earth was a crescent only 0.12 pixels in size. Venus was 0.11 pixel in diameter. The planetary images were taken with the narrow-angle camera (1500 mm focal length). Credit: NASA/JPL

“Obtaining this portrait was a terrific feat by the MESSENGER team,” says Sean Solomon, MESSENGER principal investigator and a researcher at the Carnegie Institution. “This snapshot of our neighborhood also reminds us that Earth is a member of a planetary family that was formed by common processes four and a half billion years ago. Our spacecraft is soon to orbit the innermost member of the family, one that holds many new answers to how Earth-like planets are assembled and evolve.”

Source: MESSENGER

Q & A with Mike Brown, Pluto Killer, part 2

Artist illustration of Eris and its moons. Image credit: NASA

[/caption]

Here’s part 2 of our conversation with astronomer Mike Brown. Yesterday, he talked about the latest findings on Eris, the Haumea controversy and more; today he talks about being known as the “killer” of Pluto, his reflections on Brian Marsden and his hopes for the New Horizons mission to Pluto.

Universe Today: You seem to actually relish the role of Pluto Killer…

Mike Brown: You know, I didn’t initially. I really wanted to be the thoughtful person who explained to people what was going on and I tried very hard. And the reason I have become a sort of more militantly Pluto-killer-ish over the past couple of years is because — against what I think is reason — there are other astronomers who have been militantly pro-Pluto and saying things that are generally misleading in public. And it pains me to have scientists say things that I know they don’t actually think are true.

To hear an astronomer say that there is no logical reason why you would come up with eight planets, it makes no scientific sense. No one can say that and actually believe it. There are good arguments for one side or the other and I would enjoy it more if they would make the arguments instead of just trying to sort of manipulate public opinion, but I don’t think they do. Mostly the small number of the pro-Pluto crowd tends to be more manipulative. I thought somebody needs to defend the very reasonable idea of eight planets, so I have taken on that role.

UT: The Pluto-is-a-planet people are definitely vociferous.

Mike Brown: And honestly, I think manipulative is the word. They don’t believe what they say, they know what they say is not true and they say it in ways that are deceitful. That is maybe a strong statement to make, but they know what they are saying is not true. That bothers me. You shouldn’t say things that you know is not true just to make a point.

UT: Could you talk a little about Brian Marsden? He played a rather big role in the book, and in how things turned out with your discoveries – and the planet debate. He’ll obviously be missed.

Mike Brown: I have a book sitting at home that I had actually signed that I was going to send to him, and I didn’t get a chance to do it. I’m really sad that he didn’t get to see it. Everybody has their ‘Brian Marsden story’, and some are versions of the same story where he was incredibly supportive of interesting things in the solar system. When we started finding these large objects, there were a lot of people who were less supportive and not really happy about the discoveries. Brian was just happy about everything – if you were discovering new objects or comets, or different observations of asteroids – he just loved it all and he was always the first, you could just hear it in his voice when you talked to him, he was just genuinely excited about these new things that were being discovered.

He can’t be replaced. I like the people at the minor planet center and I like what they are doing, but he was unique. We won’t ever replace that energy and enthusiasm and the absolute love of the solar system that he had.

UT: How much are you looking forward to the New Horizons mission flyby of Pluto – and do you have any inklings of what it might come across in the Kuiper Belt?

Mike Brown. Credit: CalTech

Mike Brown: It going to be really interesting. The funny thing is, the answer to that question three weeks ago was “I can’t wait because all of these objects are sort of the same out there in the Kuiper Belt, and going to the closest one, even if it is not the biggest one will really teach you about everything that is out there.” That statement is no longer true. With Eris and Pluto being so different, we won’t learn as much about Eris as I had initially hoped, but like everyone else, I’ll be waiting anxiously for those first pictures to come back. I can’t wait to see them. Every time we go somewhere we’ve never gone before we learn things – the things we learn are never the things you think you are going to learn. I’m prepared to be astounded.

I am looking forward to, as much if not more perhaps, the later flyby of New Horizons of a small KBO. I think that scientifically understanding the smaller more typical objects is perhaps even more important than understanding the rare, big crazy objects.

Artist concept of the New Horizons spacecraft. Credit: NASA
Artist concept of the New Horizons spacecraft. Credit: NASA

UT: And are you still actively looking for objects out there?

Brown: Yes, we are looking very hard in the southern hemisphere now. We’ve finished the northern hemisphere, at least the bright objects, so I don’t think there will be too many more big ones discovered.
For the northern hemisphere, we knew that — at least — Clyde Tombaugh had been there first. We weren’t going to find something as bright as Pluto in the northern hemisphere because Clyde would have found it. In the southern hemisphere, it is basically wide open, because there was no Clyde Tombaugh, and we’re not even quite sure what the limit is. There’s not something 6th magnitude out there because someone would have seen it, but I don’t know how bright the brightest thing could be – that doesn’t mean that there’s something that bright there, but every day when we’re looking the possibilities are exciting.

UT: What telescopes are you using?

Brown: We have two that are working right now. One is actually an old data set from a near Earth asteroid survey and we are reprocessing the data in a way to make is sensitive to the types of objects we are looking for. This is the Uppsala ½ meter telescope at Siding Spring in Australia. It is the same telescope and the same data that the Catalina Sky Survey uses for the southern hemisphere.
And then as soon as telescope is finally online, we’ll use the Australian National University Skymapper telescope, which is kind of a Pan-STARRS south type of telescope that can do big surveys of the southern skies for many different purposes, including finding large Kuiper Belt objects.

It is fun to know again that some morning we might wake up and find something big and cool. That is always a fun way to go through life.

Read part 1 of this interview, and also see our review of Brown’s new book, “How I Killed Pluto and Why it Had it Coming” and find out how you could win a copy!

Q & A with Mike Brown, Pluto Killer, part 1

"How I Killed Pluto" -- a new book by planet hunter (and killer) Mike Brown.

[/caption]

Talk about sticking to your convictions. Astronomer Mike Brown discovered an object that, at the time, was thought to be 27% bigger than Pluto. But he really didn’t want it to be a planet — he had argued against Pluto and other objects he had discovered being planets on the basis that they are in the middle of a “swarm” of similar objects. “To me it made no sense to pull one of even a few objects out of the swarm and call them something other than part of the swarm,” he wrote in his new book, “How I Killed Pluto and Why it Had it Coming.”

Universe Today had the chance to talk with Brown about his book, his discoveries, and even the latest news that perhaps Pluto actually is the biggest dwarf planet out there that we know of. Enjoy part 1 of our Q & A with Mike Brown, with part 2 coming tomorrow.

Also read our review of “How I Killed Pluto,” and find out how you can win a copy!

Universe Today: Over the past couple of weeks, some new discoveries have come out about the size of Eris. What are your thoughts that Pluto may actually be a bit bigger than Eris?

Mike Brown. Credit: CalTech

Mike Brown: The super-cool thing there is that when we first discovered Eris, it was great. I mean, it was fascinating for everyone in the public because we thought it was bigger than Pluto. But scientifically it really didn’t add much to our understanding of the solar system. Eris was kind of just a slightly larger twin of Pluto and nothing new was going on there. That was because we assumed it was near the larger end of the ranges of uncertainty. And by assuming that, we thought Eris was on the smaller end of density, making it the same density as Pluto. When that is the case, it is just a copy. But now that we realize it is essentially the same size as Pluto, that means Eris is a good bit more dense than Pluto, and that is actually really shocking. It tells you that these two things that formed in more or less the same place in the solar system and you would have predicted to have the same composition are essentially very different in composition. I’ve been beating my head against the wall ever since those first reports that Eris was actually smaller.

UT: Your new book, “How I Killed Pluto (and why it had it coming)” is a great read – a real page turner! How long did it take you to actually write your book?

Mike Brown: It was in fits and starts. I started it before the Pluto demotion, and I started it as sort of a ‘discovery of Eris’ book and when it looked like the IAU was going to declare it a planet. And then when it wasn’t a planet and when Pluto became part of the story I restarted it as still about Eris, but also about Pluto. In the end, the sad part of it that nobody really cares about Eris, they only care about Pluto, and so it took me awhile to get back to writing it and get to the point where I could say that this was really about Pluto as well as Eris. So it was over 2-3 years in different chunks, but the final part was a 6 month push in 2009 when I sat down and wrote the whole book.

UT: At the beginning of the book, you portray yourself as sort of stumbling into the field of looking for large objects in the Kuiper Belt. And yet here you are…

Mike Brown: I don’t know if there is any way to know ahead of time how your life is going to work out. Most people don’t have a grand plan they follow and have it work out. You start working on something and sometimes these things work out spectacularly; sometimes it works out OK, and nobody hears about it and sometimes things just don’t work out.

You see people who have done big amazing things, and you wonder how they got from here to there. Usually there is drive to do something, but everybody has to have some luck. They have to have drive and ability, as nobody does it on just luck, though. But there was no requirement that there were these large things out there in the outer solar system, and then the story would have been, “wow, what an idiot. This guy spent two years doing something and nothing came of it.” I had no way of knowing ahead of time which was going to be the answer. I’m lucky, and happy that it turned out the way it did.

Artist concept of Haumea. Credit: NASA

UT: There was a dispute about the discovery of Haumea, where either it was an incredible coincidence that other astronomers may have found the object, too, or they may have stolen your data. In your book you say that you’re fine with not really knowing what happened – which to me is incredibly noble of you (and I think you were very noble about the whole episode). Why don’t you want to know?

Mike Brown: I don’t mean to say I don’t want to know; I would love to know. If you knew the answer and I knew I could ply you with whisky until you told me, I would go out and buy as much whisky as I could. I would love to know the answer. I don’t think I ever will, and so I’m maybe resigned to that. In my gut, I feel like I know what happened, but I really don’t. I could be wrong and then every once in a while I have doubts and say maybe these guys really didn’t do anything wrong and they had their lives ruined. It is very frustrating. I really would like to know the answer because somebody in this story is a bad person, and I hope it is not me. But, god, what if it is?

UT: You certainly gave them the opportunity to tell their side of the story and I don’t know if they really have.

Mike Brown: No, they haven’t. And it is easy to take that interpretation, and if you watch enough “Law and Order” you know that people who hide what is going on are always guilty. But at the same time I try to put myself in their shoes, where they didn’t know what they were about to stumble into, and to suddenly be barraged by the media — to which they weren’t accustomed — and not knowing what to do about it, I can imagine that they wouldn’t tell their side of the story. If everything had been on the up and up, they may have behaved the same way. Deep down inside, I don’t think so, but I don’t have certainty. And I would love to have it. Someday, somewhere, someone may walk into my office and close the door and say, “OK, I know what happened and let me tell you.’ I relish that day, but I don’t know that it will ever happen.

UT: Well, again, I thought you were very nice about the whole episode.

Mike Brown: Before writing the book, I went back and looked at all the emails back and forth about this. The crazy part for me was that my daughter was 20 days old, and these guys had just potentially done something horrible. But when I started writing about it for the book, I didn’t really remember much of it because don’t think anyone remembers much from when their children are 20 days old. I could really only reconstruct it from my own emails with them. And looking back, I am kind of proud of myself. I was really very nice. I was very supportive. I made a big website proclaiming their discovery and pointing everything to them. So, wow, on lack of sleep I’m a relatively nice guy.

Perhaps it helps having a little infant that you are carrying around for perspective as far as what is important and what isn’t. As trite and cliché-ish as that is, I think it is actually true.

UT: But yet, you seem to relish the role of “Pluto Killer”…

Check back tomorrow to find out Mike Brown answers this question, and more!