App Review: Earth or Not Earth

The folks at Cosmoquest have released a cool new citizen science app for Android! “Earth or Not Earth” allows players to test their knowledge of Earth, as well as learn more about the fascinating geology of the rocky worlds in our solar system. You can also challenge your friends on Facebook to beat your scores, thanks to the Facebook integration feature.

“Earth or Not Earth” was developed by Southern Illinois University graduate student and Cosmoquest developer Joseph Moore. Moore designed “Earth or Not Earth,” and included two additional game features: “Matching” and “Pick 2.” The images used in “Earth or Not Earth” are public domain, and are sourced primarily from NASA planetary science missions, with more images to be added to the app in the future.

The app does cost $1.99 USD, and the Proceeds from “Earth or Not Earth” help fund the programmers at Cosmoquest, as well as citizen science programs, educational programs, and future mobile apps.

"Earth or Not Earth" Main Menu - Click to embiggen
“Earth or Not Earth” main menu – Click to embiggen.
Image Credit: Cosmoquest
The user interface for “Earth or Not Earth” is pretty straightforward. After installing the app, the initial screen will prompt users to login with their Cosmoquest credentials (or create a new account). While some may see this as an annoyance, a Cosmoquest account allows access to many of the other citizen science projects Cosmoquest offers, such as Moon Mappers, Asteroid Mappers, and others.

After logging in, users are able to select one of several game-play options.

Players can start with the “Learn” section, which allows users to learn more about the rocky worlds in our solar system. Additionally, users can learn about geologic features such as craters, volcanism, fault lines, and even man-made surface alterations.

After learning about the processes that shape and alter rocky worlds in our solar system, users can test their knowledge with the “Earth or Not Earth”, “Matching”, or “Pick Two” mini-games.

Earth or Not Earth? Click to embiggen. Image Credit: Cosmoquest
Earth or Not Earth?
Click to embiggen.
Image Credit: Cosmoquest
“Earth or Not Earth” Displays images from various NASA planetary missions. The goal for the player is to determine if the image is of Earth, or Not. For those looking for a greater challenge, the “Matching” minigame provides an image that players must try to match to a rocky world, or a planetary geology process.

The most challenging mini-game in “Earth or Not Earth” is “Pick Two”, where players select two images that belong to the same world out of several shown on screen. With some images being in color, and others in black and white, players must rely on the knowledge gained from the “Learn” feature to make educated deductions about which images belong to which world.

Fans of planetary science will find “Earth or Not Earth” a challenging, yet entertaining and educational gaming experience. Gameplay is quick, and makes for a nice break between meetings, or something to pass the time while waiting to catch the bus.

“Earth or Not Earth” is available from the Google Play store at: If you’d like to learn more about how the app was developed, Cosmoquest has a blog post available at:

Book Review: ‘Five Billion Years of Solitude’ by Lee Billings

"Five Billion Years of Solitude" By Lee Billings

Over the past few years, the field of astrobiology has made great strides. With missions such as Kepler making exoplanet discoveries commonplace, the question no longer is “Are other planets out there?” but “When will we find a true twin of Earth?”

A new book, “Five Billion Years of Solitude,” takes the reader from the earliest efforts of astrobiology, along with information on how life took hold on Earth, to how we can use that information to help understand how life may flourish on other worlds – all while giving us a glimpse inside the minds of some of the field’s most notable scientists.

Read a Q&A with Billings here.

To say that author Lee Billings tackles only the subject of astrobiology in “Five Years of Solitude” would be selling this book extremely short. While the main focus of the book is life on Earth and the possibility of life elsewhere, readers will find “Five Years of Solitude” incredibly engaging. Combining conversations with such legends like Frank Drake and Sara Seager with in-depth discussions of numerous science topics related to the search for life, Billings has created a book that is not only entertaining, but educational as well.

For those who aren’t well-versed in the details of astrobiology, the casual, “conversational” approach Billings takes to presenting scientific concepts makes for easily digestible reading. While the scientific concepts explained in the book are laid out in good detail, Billings doesn’t present them in an overly dry, or boring manner. Weaving scientific knowledge with interviews from heavy hitters in the world of astrobiology is one of the book’s strongest selling points. The book is both a primer on astrobiology, and a collection of knowlegde from some of the greatest minds in the field.

In the many conversations Billings has with people such as Geoff Marcy, Frank Drake, Sara Seager, and many others, one can get a “feel” for the sometimes insurmountable obstacles scientists face in trying to get their projects approved and funded. Readers will finish “Five Billion Years of Solitude” with a deep appreciation for the miracle of life on Earth, and the hard work and dedication researchers invest in understanding life on Earth, and the possibility of life elsewhere.

Additionally, Billings provides a gold mine of additional materials that readers can dive into if they want to immerse themselves much deeper into the field of astrobiology. If you are interested in the field of Astrobiology, and understanding how life developed on Earth (and possibly elsewhere), you’ll find “Five Billion Years of Solitude” a very engaging book.

Stay Tuned for an interview with the author, Lee Billings, here at Universe Today later this week. ‘Five Billion Years of Solitude” is available now online, and at your local bookstore.

Stunning Astrophoto: The Milky Way Over Death Valley

The Milky Way Over Death Valley. Image Credit: Jeff Moreau

High School Physics teacher and photographer Jeff Moreau took this incredible photo of the Milky Way over Death Valley. Jeff planned his photo on a night where the Moon had already set, arriving in Badwater Basin at Death Valley around 3:30 am.

Regarding his image, Jeff says, “As a high school physics teacher, I love astronomy. I frequently am showing my students current astronomy news and images as there is so much that is so easily fascinating going on out in space.”

The image shown above is comprised of 7 photos, which do an incredible job of covering the extent of the Milky Way. According to Jeff, if he were to do this image again, he would take more images, possibly some shot horizontally, so that there would be a little less visible star trails on the top of the image.

One interesting detail about the image is that Jeff had never been to Death Valley before. Upon entering the park, the temperature (around 3AM), was around 99 degrees fahrenheit. Jeff had no idea of what the landscape looked like. As the Milky Way faded and the first hints of dawn began to emerge Jeff was treated to an incredible scene that he describes over on Google+ at:

Jeff has been teaching high school physics for the past six years, and has been taking photographs for the last year and a half. Last summer Jeff took images of the Milky Way from atop Cadillac Mountain in Acadia National Park.

Jeff also maintained a picture-of-the-day website from 2003-2007 before taking his hobby to social media. Impressed by the huge community of photographers on Google+. Jeff was motivated to get a new camera and dive deeper into his hobby.

You can view Jeff’s entire Flickr album at:[email protected]/ and you can add Jeff to your Google+ photography circle at:

Join the Golden Spike Video Contest

If you’ve been following Golden Spike Company, you know that the company is planning to launch commercial Lunar exploration missions by 2020.

Last month, Golden Spike announced their Indiegogo crowdfunding campaign to raise funds to help generate public interest in their mission. So far people from around the world have contributed to the Golden Spike Indiegogo campaign.

Today, Golden Spike has announced a video submission contest for their supporters. Keep reading to learn how you can participate!

The video competition is open to anyone who contributes to the Indiegogo crowdfunding campaign at:

To enter, simply submit your video on why you believe Lunar exploration is important. Golden Spike will accept entries for the first round of the competition until Friday, March 15. All appropriate videos will be uploaded to the Golden Spike Youtube Channel where the public can vote for their favorite via the comments section. The prize for the first round of videos is a lunar rover model (at left).

Email your video submission to: [email protected]

Learn more about Golden Spike Company at:

New Online Astronomy Course from CosmoQuest

For those of you who’d like to brush up on your Astronomy knowledge, or never took Astronomy 102, CosmoQuest has a new online course offering for you!

Following the success of the initial 101-level course (CQX 001: Solar System Science), the newest course offering is “CQX 003: Galaxies and Galaxy Clusters”. Just like the previous course offering, CQX003 is an 8-session, 4-week course, which will explore galaxies, galaxy clusters, and brief introduction to cosmology.

“Planets are cool and all, but I’m an extragalactic girl at heart. There is just NO comparison for studying the way that billions of stars interact in some of the largest gravitationally bound structures in the universe.” said Nicole Gugliucci (CosmoQuest) via the CosmoQuest Blog. “This class will cover all of that as well as what active galaxies are all about, another one of my favorite subjects. Then it will round up with a brief introduction to cosmology which is truly the study of EVERYTHING.”

Once again, the course will be a hybrid online course with lectures taking place via Google+ hangouts, with course assignments and homework assigned via Moodle. The instructor will once again be yours truly, Ray Sanders. For those not familiar with me, I’m a research assistant at Arizona State University, and have written for Universe Today in the past. I also blog when I have time over at “Dear Astronomer”.

In addition to my lectures, there may also be “guest” appearances from astronomers Dr. Pamela Gay, and Dr. Nicole Gugliucci.

“I love my solar system and its amazing planets and moons, but this class will give you a chance to expand your understanding beyond the solar system and explore the limits of what we know about the universe.” adds Georgia Bracey (CosmoQuest). “Beginning back when the idea of other galaxies was still a matter of debate, you’ll journey forward to examine our present-day understanding of how galaxies are formed and evolve, including a look at some of the hot topics in astronomy like dark matter, dark energy, active galactic nuclei, and the geometry of the universe.”

CosmoQuest has additional courses in the works for students interested in Cosmology, Data Reduction, Geology/Planetary Science, and more.

The cost for the class is $240, and the class is limited to 8 participants, with the possibility for an additional 5 participants. CQX003: Galaxies and Galaxy Clusters begins on November 26th 2012. More information, and a sign up link is at:

Don’t miss this opportunity to combine the convenience of an online class with the lively interaction of a small group of astronomers and astronomy enthusiasts!

Gamma-ray Outbursts Shed New Light on Pulsars

A pulsar with its magnetic field lines illustrated. The beams emitting from the poles are what washes over our detectors as the dead star spins.

Researchers using the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope have developed a new method to detect a special class of stellar remnant, known as pulsars. A pulsar is a special type of neutron star, which spin hundreds of times per second. When the intense spin is combined with beams of energy caused by intense magnetic fields, a “lighthouse” pulse is generated. When the “lighthouse” beam sweeps across Earth’s field of view, the object is referred to as a pulsar.

Led by Matthew Kerr (Kavli Institute for Particle Astrophysics and Cosmology), and Fernando Camilo (Columbia University), a research team recently announced a new method for detecting pulsars. How will Kerr’s research help astronomers better understand (and locate) these small, elusive stellar remnants?

Every three hours, the LAT surveys the entire sky, searching for the high energy signatures associated with gamma-ray outbursts. In general the energy levels of the photos detected by the LAT are 20 million to over 300 billion times as energetic as the photons associated with visible light.

By combining observations from the LAT and data obtained from the Parkes radio telescope in Australia, the team is able to detect pulsar candidates. The team’s approach combines a “wide area” approach of an all-sky telescope like the LAT with the sensitivity of a radio telescope. So far, the team’s discovery of five “millisecond” class pulsars, including one unusual pulsar has proven their technique to be successful.

The unusual pulsar, officially named PSR J0101–6422, had an additional 35 days of study devoted to better understanding its properties. Once the radio pulsation period and phase were determined, an incredible amount of data, including data on its gamma-ray pulsations was obtained. Using the data, the team was able to determine PSR J0101–6422 is roughly 1750 light-years away from Earth, and has an unusual light curve which features a “sandwich” of two gamma-ray peaks with an intense radio peak in the center, like a cosmic ham sandwich.

The team was unable to explain the phenomenon with standard pulsar emission models.which the team could not explain with standard geometric pulsar emission models, and have proposed that J0101–6422 is a new hybrid class of pulsar that features radio emissions that originate from low and high altitudes above the neutron star.

If you’d like to learn more about the Fermi Gamma-ray space telescope, visit:

The results of Kerr’s research have been published in the Astrophysical Journal.

Image #1 Caption:Clouds of charged particles move along the pulsar’s magnetic field lines (blue) and create a lighthouse-like beam of gamma rays (purple) in this illustration. Image Credit: NASA

Help Astronomers Collect Venus Transit Data!

In the Rapa Nui language, Hetu'u means stars. Image Credit: David Rodriguez (Universidad de Chile).

[/caption]During June 5th/6th 2012, Venus will be transiting the Sun, where it will make a rare appearance as a small dot moving across the face of the Sun. Astronomers around the world are planning observations, and one team is traveling to Easter Island in an attempt to reproduce the measurements first made/proposed by Edmund Halley in the late 1600’s, getting precise data of first contact between Venus and the Sun. They are working with students from around the world and are looking for help to connect with more students to participate in the event.

The team is asking for assistance from astronomy clubs and organizations, especially those who work with school children. Since the team will be observing on Easter Island, their view of the transit will be limited (it begins two hours before sunset). Since the team will only be measuring the time of ingress and not egress, the team is reaching out to additional observers to help collect data. So far, the team has colleagues in Hawaii, New York, Australia, Iran, and Holland who will be assisting with their efforts.

Keep reading to learn how your club (or school group) can help collect transit data!

Dr. Jacqueline Faherty states, “As part of the celebration, we are networking multiple school groups around the world that are also viewing the transit so we can make a measurement of the distance to the Sun, combining timing measurements of first and last contact from various points on the Earth.” Faherty also adds, “This is not about making an accurate measurement but rather an attempt to inspire young students, our next generation of scientists, when they see that astronomical phenomena (while rare) can be used to make real and extremely useful measurements while at the same time connecting a network of students from different countries, cultures, political histories, etc.”

To participate you only need do the following:

  • At the time of the transit have a calibrated clock (GPS clock preferred but not necessary)
  • From your location we need the time of ingress or egress interior (exterior as well if you can do it). This is the time that Venus has passed into the interior of the Sun. See this webpage for an estimated time of when you can expect the events to occur for your location:
  • As a secondary measurement of the transit we are also going to try to match images taken of the transit from different positions on Earth. If you will be photographing the event please try to capture an image exactly (or close to exactly) on the 10’s of each hour. We will coordinate the rest.
  • Be sure to take a photograph of you and your students watching/measuring/enjoying the transit
  • Email Dr. Faherty ([email protected]) saying that you are interested in participating in our group so we can add you to our global network and map:
  • Once again the team is especially interested in school groups that will be viewing the transit. The team hopes to inspire the next generation of scientists, by demonstrating how astronomical phenomenon can be used for scientific purposes. The team will feature photos from participating groups and the results of their measurements in a blog series hosted by the American Museum of Natural History.

    For more information on the team, visit their website at:

    If you’d like to see the math behind the measurements, visit David Rodriguez’s blog:

    Visibility information for the transit of Venus can be found at:

    Source: Dr. Catherine Kaleida, Dr. Jacqueline Faherty, and the 2012 Transit of Venus Easter Island Public Outreach Team

    Can “Warp Speed” Planets Zoom Through Interstellar Space?

    Artist’s conception of a runaway planet zooming through interstellar space. A glowing volcano on the planet’s surface hints at active plate tectonics that may keep the planet warm. Image Credit: David A. Aguilar (CfA)

    [/caption]Nearly ten years ago, astronomers were stunned to discover a star that had been apparently flung from its own system and travelling at over a million kilometers per hour. Over the years, a question was brought up: If stars can be ejected at a high velocity, what about planets?

    Avi Loeb (Harvard-Smithsonian Center for Astrophysics) states, “These warp-speed planets would be some of the fastest objects in our Galaxy. If you lived on one of them, you’d be in for a wild ride from the center of the galaxy to the Universe at large.”

    Idan Ginsburg (Dartmouth College) adds, “Other than subatomic particles, I don’t know of anything leaving our galaxy as fast as these runaway planets.”

    The mechanics responsible for the super-fast planets are similar to those responsible for “hypervelocity” stars. With stars, if a binary system drifts too closely to a supermassive black hole (such as the ones in the center of galaxies), the gravitational forces can separate the stars – sending one outward at incredible speeds, and the other in orbit around the black hole. Interestingly enough, “Warp Speed” planets can theoretically travel at a few percent of the speed of light – not quite as fast as Star Trek’s Enterprise, but you get the point.

    The team, which includes Loeb and Ginsburg, created computer models to simulate the outcome if each star had planets orbiting it. The outcome of the model showed that the star shot into interstellar space would keep its planets, but the star “captured” into orbit around the black hole would have its planets stripped and sent outward at incredible speeds. Typical speeds for the planets range from 11-16 million kilometers per hour, but given the proper conditions could approach even higher velocities.

    As of now, it’s impossible for astronomers to detect a wandering planet due to their small size, distance, and rarity. By detecting the dimming of light levels from a hypervelocity star as an orbiting planet crosses its face, astronomers could detect planets that orbit said star.

    Ginsburg added, “With one-in-two odds of seeing a transit, if a hypervelocity star had a planet, it makes a lot of sense to watch for them.”

    Loeb concluded with, “Travel agencies advertising journeys on hypervelocity planets might appeal to particularly adventurous individuals.”

    If you’d like to learn more about hypervelocity planets, you can access a draft version of the upcoming paper at:

    Source(s): Harvard-Smithsonian Center for Astrophysics , Hypervelocity Planets and Transits Around Hypervelocity Stars

    Solving the Puzzle of Apollo 12’s Mysterious Magnetic Moon Rocks

    The moon's largest grouping of magnetic anomalies, on the left, is near the northern rim of the South Pole-Aitken basin, which scientists believe was created by the impact of a massive asteroid about 4.5 billion years ago. Image Credit: NASA/LRO/Science/AAAS


    Ever since their discovery by the Apollo 12 crew, scientists have been puzzled by strongly magnetized rocks found on the Moon. Most Moon rocks that were brought back by the Apollo missions have very little iron, and therefore lack the ability to be strongly magnetized. At first, the magnetic oddities didn’t appear to be related to any lunar geology such as craters or lava flows. Over time, additional lunar missions have provided more data showing that only some portions of the Moon’s crust have magnetic fields. A team of scientists now theorize that the magnetized “patches” on the lunar surface may be the remains of an asteroid that crashed into the Moon shortly after its formation nearly 4.5 billion years ago. The impact crater, known as the South Pole-Aitken basin is one of the largest known in our Solar System.

    Mark Wieczorek (Paris Institute for Global Physics), describes the South Pole-Aitken basin as, “this huge, whopping crater that’s roughly half the size of the U.S,” and says it may hold the answers to the mystery of the Apollo 12 rocks.

    The Apollo 12 landing site as seen by LRO. Credit: NASA/GSFC/Arizona State University

    Studies of the basin show that it is elliptical which suggests the impact was by a large object that hit at an oblique angle. Wieczorek speculates that the impactor was 10% to 30% iron by weight and about 100 times more magnetic than the lunar regolith. Interestingly enough, the theorized impact angle would have flung debris from the object in a pattern very similar to the observed magnetic anomalies. The material could have been magnetized as it cooled by a magnetic field that may have existed early in our Moon’s history.

    Wieczorek and his team set out to test their theories with computer simulations of different types of impacts. The research led to a scenario where an object struck the Moon at about a 45 degree angle with a velocity of 15 kilometers per second. The team’s best impact model was described as normal by Wieczorek who stated, “We don’t require improbable conditions.”

    Now the team needs to address one other question: How and when did a magnetic field develop on the Moon?

    Wieczorek offers a simple solution: Go back to the moon and collect samples.

    Source: NASA Lunar Science Institute

    Hubble Spots Mysterious Dark Matter ‘Core’

    This composite image shows the distribution of dark matter, galaxies, and hot gas in the core of the merging galaxy cluster Abell 520, formed from a violent collision of massive galaxy clusters. Image Credit: NASA, ESA, CFHT, CXO, M.J. Jee (University of California, Davis), and A. Mahdavi (San Francisco State University)

    [/caption]Astronomers are left scratching their heads over a new observation of a “clump” of dark matter apparently left behind after a massive merger between galaxy clusters. What is so puzzling about the discovery is that the dark matter collected into a “dark core” which held far fewer galaxies than expected. The implications of this discovery present challenges to current understandings of how dark matter influences galaxies and galaxy clusters.

    Initially, the observations made in 2007 were dismissed as bad data. New data obtained by the Hubble Space Telescope in 2008 confirmed the previous observations of dark matter and galaxies parting ways. The new evidence is based on observations of a distant merging galaxy cluster named Abell 520. At this point, astronomers have a challenge ahead of them in order to explain why dark matter isn’t behaving as expected.

    “This result is a puzzle,” said astronomer James Jee (University of California, Davis). “Dark matter is not behaving as predicted, and it’s not obviously clear what is going on. Theories of galaxy formation and dark matter must explain what we are seeing.”

    Current theories on dark matter state that it may be a kind of gravitational “glue” that holds galaxies together. One of the other interesting properties of dark matter is that by all accounts, it’s not made of same stuff as people and planets, yet interacts “gravitationally” with normal matter. Current methods to study dark matter are to analyze galactic mergers, since galaxies will interact differently than their dark matter halos. The current theories are supported by visual observations of galaxy mergers in the Bullet Cluster, and have become a classic example of our current understanding of dark matter.

    Studies of Abell 520 are causing astronomers to think twice about our current understanding of dark matter. Initial observations found dark matter and hot gas, but lacked luminous galaxies – which are normally detected in the same regions as dark matter concentrations. Attempting to make sense of the observations, the astronomers used Hubble’s Wide Field Planetary Camera 2 to map dark matter in the cluster using a gravitational lensing technique.

    “Observations like those of Abell 520 are humbling in the sense that in spite of all the leaps and bounds in our understanding, every now and then, we are stopped cold,” said Arif Babul (University of Victoria, British Columbia).

    Jee added, “We know of maybe six examples of high-speed galaxy cluster collisions where the dark matter has been mapped, but the Bullet Cluster and Abell 520 are the two that show the clearest evidence of recent mergers, and they are inconsistent with each other. No single theory explains the different behavior of dark matter in those two collisions. We need more examples.”

    The team has worked on numerous possibilities for their findings, each with their own set of unanswered questions. One such possibility is that Abell 520 was a more complicated merger than the Bullet Cluster encounter. There may have been several galaxies merging in Abell 520 instead of the two responsible for the Bullet Cluster. Another possibility is that like well-cooked rice, dark matter may be sticky. When particles of ordinary matter collide, they lose energy and, as a result, slow down. It may be possible for some dark matter to interact with itself and remain behind after a collision between two galaxies.

    Another possibility may be that there were more galaxies in the core, but were too dim for Hubble to detect. Being dimmer, the galaxies would have formed far fewer stars than other types of galaxies. The team plans to use their Hubble data to create computer simulations of the collision, in the hopes of obtaining vital clues in the efforts to better understand the unusual behavior of dark matter.

    If you’d like to learn more about the Hubble Space Telescope, visit: