Pluto and Other Kuiper Belt Objects Started Out With Water Oceans, and Have Been Slowly Freezing Solid for Billions of Years

It seems unlikely that an ocean could persist on a world that never gets closer than 30 astronomical units from the Sun. But that’s the case with Pluto. Evidence shows that it has a sub-surface ocean between 100 to 180 km thick, at the boundary between the core and the mantle. Other Kuiper Belt Objects may be similar.

But time might be running out for these buried oceans, which will one day turn to ice.

Continue reading “Pluto and Other Kuiper Belt Objects Started Out With Water Oceans, and Have Been Slowly Freezing Solid for Billions of Years”

There Are Winds Blowing On Pluto, Driven by Frozen Nitrogen

Earth and Pluto don’t have much in common. Earth is a vibrant, living world, whereas Pluto is cold, distant and lifeless. But one thing they do have in common is nitrogen. Earth’s atmosphere is about 78% nitrogen, and Pluto’s primary atmospheric constituent is also nitrogen, although the exact percentage is unclear.

On Pluto, where the surface temperature is about 42 Kelvin (-231 Celsius) most of that nitrogen is frozen. A new study says that Pluto’s frozen nitrogen drives the planet’s winds, and shapes its feature surfaces.

Continue reading “There Are Winds Blowing On Pluto, Driven by Frozen Nitrogen”

NASA is Now Considering a Pluto Orbiter Mission

NASA’s New Horizons mission taught us a lot about Pluto, the ice dwarf planet. But the spacecraft sped past Pluto so quickly, we only got high-resolution images of one side of the planet, the so-called “encounter side.” New Horizons gave us a big leap in understanding, but in a way, it asked more questions than it answered.

The next step is clearly an orbiter, and now NASA is starting to seriously consider one.

Continue reading “NASA is Now Considering a Pluto Orbiter Mission”

A Bunch of New Names for Pluto’s Surface Features Were Just Approved

Pluto is getting some new names. In the past, prior to the New Horizons mission, there wasn’t much to name. But now that that spacecraft has flew past Pluto and observed it up close, there’s some features that need naming.

Now the IAU (International Astronomical Union) has approved a new set of names for 14 of the dwarf planet’s surface features.

Continue reading “A Bunch of New Names for Pluto’s Surface Features Were Just Approved”

An Insulating Layer of Gas Could Keep a Liquid Ocean Inside Pluto

In July of 2015, NASA’s New Horizons mission made history by becoming the first spacecraft to ever conduct a flyby with Pluto. In addition to providing the world with the first up-close images of this distant world, New Horizons‘ suite of scientific instruments also provided scientists with a wealth of information about Pluto – including its surface features, composition, and atmosphere.

The images the spacecraft took of the surface also revealed unexpected features like the basin named Sputnik Planitia – which scientists saw as an indication of a subsurface ocean. In a new study led by researchers from the University of Hokkaido, the presence of a thin layer of clathrate hydrates at the base of Pluto’s ice shell would ensure that this world could support an ocean.

Continue reading “An Insulating Layer of Gas Could Keep a Liquid Ocean Inside Pluto”

Pluto and Charon Don’t Have Enough Small Craters

In 2015, the New Horizons mission became the first robotic spacecraft to conduct a flyby of Pluto. In so doing, the probe managed to capture stunning photos and valuable data on what was once considered to be the ninth planet of the Solar System (and to some, still is) and its moons. Years later, scientists are still poring over the data to see what else they can learn about the Pluto-Charon system.

For instance, the mission science team at the Southwest Research Institute (SwRI) recently made an interesting discovery about Pluto and Charon. Based on images acquired by the New Horizons spacecraft of some small craters on their surfaces, the team indirectly confirmed something about the Kuiper Belt could have serious implications for our models of Solar System formation.

Continue reading “Pluto and Charon Don’t Have Enough Small Craters”

New Reasons why Pluto Should be Considered a Planet After All

In 2006, during their 26th General Assembly, the International Astronomic Union (IAU) passed a resolution to adopt a formal definition for the term “planet”. According to this definition, bodies that orbit the Sun, are spherical, do not orbit other bodies, and have cleared their orbits were designated planets. Pluto, and other such bodies that did not meet all of these requirements, would thereafter be designated as “dwarf planets”.

However, according to a new study led by Philip T. Metzger – a planetary scientists from the Florida Space Institute (at the University of Central Florida) – the IAU’s standard for classifying planets is not supported by the research literature on Pluto, and is therefore invalid. For those people who have maintained that “Pluto is still planet” for the past twelve years, this is certainly good news!

Continue reading “New Reasons why Pluto Should be Considered a Planet After All”