A First: Star Caught in the Act of Devouring a Planet

Artist's impression of a red giant star. Image credit: ESO

How’s this for a depressing look into Earth’s potential future: astronomers have witnessed the first evidence of a planet’s destruction by its aging star as it expands into a red giant.

“A similar fate may await the inner planets in our solar system, when the Sun becomes a red giant and expands all the way out to Earth’s orbit some five-billion years from now,” said Alex Wolszczan, from Penn State, University, who led a team which found evidence of a missing planet having been devoured by its parent star. Wolszczan also is the discoverer of the first planet ever found outside our solar system.

The planet-eating culprit, a red-giant star named BD+48 740 is older than the Sun and now has a radius about eleven times bigger than our Sun.

The evidence the astronomers found was a massive planet in a surprising highly elliptical orbit around the star – indicating a missing planet — plus the star’s wacky chemical composition.

“Our detailed spectroscopic analysis reveals that this red-giant star, BD+48 740, contains an abnormally high amount of lithium, a rare element created primarily during the Big Bang 14 billion years ago,” said team member Monika Adamow from the Nicolaus Copernicus University in Torun, Poland. “Lithium is easily destroyed in stars, which is why its abnormally high abundance in this older star is so unusual.

“Theorists have identified only a few, very specific circumstances, other than the Big Bang, under which lithium can be created in stars,” Wolszczan added. “In the case of BD+48 740, it is probable that the lithium production was triggered by a mass the size of a planet that spiraled into the star and heated it up while the star was digesting it.”

The other piece of evidence discovered by the astronomers is the highly elliptical orbit of the star’s newly discovered massive planet, which is at least 1.6 times as massive as Jupiter.

“We discovered that this planet revolves around the star in an orbit that is only slightly wider than that of Mars at its narrowest point, but is much more extended at its farthest point,” said Andrzej Niedzielski, also from Nicolaus Copernicus University. “Such orbits are uncommon in planetary systems around evolved stars and, in fact, the BD+48 740 planet’s orbit is the most elliptical one detected so far.”

The Hobby-Eberly Telescope

Because gravitational interactions between planets are responsible for such peculiar orbits, the astronomers suspect that the dive of the missing planet toward the star could have given the surviving massive planet a burst of energy, throwing it into an eccentric orbit like a boomerang.

“Catching a planet in the act of being devoured by a star is an almost improbable feat to accomplish because of the comparative swiftness of the process, but the occurrence of such a collision can be deduced from the way it affects the stellar chemistry,” said Eva Villaver of the Universidad Autonoma de Madrid in Spain Villaver. “The highly elongated orbit of the massive planet we discovered around this lithium-polluted red-giant star is exactly the kind of evidence that would point to the star’s recent destruction of its now-missing planet.”

The team used the Hobby-Eberly Telescope – searching for planets – when they detected evidence of the missing planet’s destruction.
The paper describing this discovery is posted in an early online edition of the Astrophysical Journal Letters (Adamow et al. 2012, ApJ, 754, L15), or another version is available on arXiv.

Lead image caption: Artist’s impression of a red giant star. Image credit: ESO

The Case of the Disappearing Dust

Astronomy has always taught us that planets form from vast clouds of dust and gas orbiting young stars. It’s a gradual process of accretion that takes hundreds of thousands, perhaps even millions, of years… or does it?

During a 1983 sky survey with the Infrared Astronomical Satellite (IRAS) astronomers identified a young Sun-like star with a large cloud of dust surrounding it. The star, named TYC 8241 2652 1, is 450 light years away and what they had found around it was thought to be the beginnings of a solar system – the protoplanetary disc from which planets form.

Fast forward to 2008. Astronomers observed at the same star with a different infrared telescope, the Gemini South Observatory in Chile. What was observed looked a lot like what was previously seen in ’83.

Then, in 2009, they looked again. Curiously, the brightness of the dust cloud was only a third of what it was the year before. And in WISE observations made the very next year, it had disappeared entirely.

“It’s like the classic magician’s trick: now you see it, now you don’t. Only in this case we’re talking about enough dust to fill an inner solar system, and it really is gone.”

– Carl Melis, lead author and postdoctoral fellow at UC San Diego

Abracadabra?

“It’s as if you took a conventional picture of the planet Saturn today and then came back two years later and found that its rings had disappeared,” said study co-author and circumstellar disk expert Ben Zuckerman of UCLA.

It’s always been thought that planets take some time to form, in the order of hundreds of thousands of years. Although that may seem like forever to humans, it’s quick in cosmic time scales. But if what they’ve seen here with TYC 8241 is in fact planetary formation, well… it may happen a lot faster than anyone thought.

On the other hand, the star could have somehow blown all the dust out of the system. More research will be needed to see if that was the case.

The really interesting thing here is that astronomers have traditionally looked for these kinds of dust clouds around stars to spot planetary formation in action. But if planets form quicker than we thought, and the dust clouds are only fleeting features, then there may be a lot more solar systems out there that we can’t directly observe.

“People often calculate the percentage of stars that have a large amount of dust to get a reasonable estimate of the percentage of stars with planetary systems, but if the dust avalanche model is correct, we cannot do that anymore,” said study co-author Inseok Song, assistant professor of physics and astronomy at the University of Georgia. “Many stars without any detectable dust may have mature planetary systems that are simply undetectable.”

Read more in the news release from the University of Georgia.

Top image: Gemini Observatory/AURA artwork by Lynette Cook.

Worlds Without Suns: Nomad Planets Could Number In The Quadrillions

Artist's concept of a free-floating Jupiter-like planet. (NASA / JPL-Caltech)

[/caption]

The concept of nomad planets has been featured before here on Universe Today, and for good reason. Not only is the idea of mysterious lone planets drifting sunless through interstellar space an intriguing one, but also the sheer potential quantity of such worlds is simply staggering. If some very well-respected scientists’ calculations are correct there are more nomad planets in our Milky Way galaxy than there are stars — a lot more. With estimates up to 100,000 nomad planets for every star in the galaxy, there could be literally quadrillions of wandering worlds out there, ranging in size from Pluto-sized to even larger than Jupiter.

That’s a lot of nomads. But where did they all come from?

Recently, The Kavli Foundation had a discussion with several scientists involved in nomad planet research. Roger D. Blandford, Director of the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University, Dimitar D. Sasselov, Professor of Astronomy at Harvard University and Louis E. Strigari, Research Associate at KIPAC and the SLAC National Accelerator Laboratory talked about their findings and what sort of worlds these nomad planets might be, as well as how they may have formed.

One potential source for nomad planets is forceful ejection from solar systems.

“Most stars form in clusters, and around many stars there are protoplanetary disks of gas and dust in which planets form and then potentially get ejected in various ways,” said Strigari. “If these early-forming solar systems have a large number of planets down to the mass of Pluto, you can imagine that exchanges could be frequent.”

And the possibility of planetary formation outside of stellar disks is not entirely ruled out by the researchers — although they do impose a lower limit to the size of such worlds.

“Theoretical calculations say that probably the lowest-mass nomad planet that can form by that process is something around the mass of Jupiter,” said Strigari. “So we don’t expect that planets smaller than that are going to form independent of a developing solar system.”

“This is the big mystery that surrounds this new paper. How do these smaller nomad planets form?” Sasselov added.

Of course, without a sun of their own to supply heat and energy one might assume such worlds would be cold and inhospitable to life. But, as the researchers point out, that may not always be the case. A nomad planet’s internal heat could supply the necessary energy to fuel the emergence of life… or at least keep it going.

“If you imagine the Earth as it is today becoming a nomad planet… life on Earth is not going to cease,” said Sasselov. “That we know. It’s not even speculation at this point. …scientists already have identified a large number of microbes and even two types of nematodes that survive entirely on the heat that comes from inside the Earth.”

Researcher Roger Blandford also suggested that “small nomad planets could retain very dense, high-pressure ‘blankets’ around them. These could conceivably include molecular hydrogen atmospheres or possibly surface ice that would trap a lot of heat. They might be able to keep water liquid, which would be conducive to creating or sustaining life.”

And so with all these potentially life-sustaining planets knocking about the galaxy,  is it possible that they could have helped transport organisms from one solar system to another? It’s a concept called panspermia, and it’s been around since at least the 5th century BCE when the Greek philosopher Anaxagoras first wrote about it. (We’ve written about it too, as recently as three weeks ago, and it’s still a much-debated topic.)

“In the 20th century, many eminent scientists have entertained the speculation that life propagated either in a directed, random or malicious way throughout the galaxy,” said Blandford. “One thing that I think modern astronomy might add to that is clear evidence that many galaxies collide and spray material out into intergalactic space. So life can propagate between galaxies too, in principle.

There could be quadrillions of nomad planets in our galaxy alone -- and they could even be ejected into intergalactic space. (Image: ESO/S.Brunier)

“And so it’s a very old speculation, but it’s a perfectly reasonable idea and one that is becoming more accessible to scientific investigation.”

Nomad planets may not even be limited to the confines of the Milky Way. Given enough of a push, they could be sent out of the galaxy entirely.

“Just a stellar or black hole encounter within the galaxy can, in principle, give a planet the escape velocity it needs to be ejected from the galaxy. If you look at galaxies at large, collisions between them leads a lot of material being cast out into intergalactic space,” Blandford said.

The discussion is a fascinating one and can be found in its entirety on The Kavli Foundation’s site here, and watch a recorded interview between Louis Strigari and journalist Bruce Lieberman here.

The Kavli Foundation, based in Oxnard, California, is dedicated to the goals of advancing science for the benefit of humanity and promoting increased public understanding and support for scientists and their work.

Will This Be The Fate Of The Earth?

Artist's impression of PG0843+516, a white dwarf star surrounded by Earthlike planetary remains. (© Mark A. Garlick / space-art.co.uk / University of Warwick)

[/caption]

Astronomers have found four nearby white dwarf stars surrounded by disks of material that could be the remains of rocky planets much like Earth — and one star in particular appears to be in the act of swallowing up what’s left of an Earthlike planet’s core.

The research, announced today by the Royal Astronomical Society, gives a chilling look at the eventual fate that may await our own planet.

Astronomers from the University of Warwick used Hubble to identify the composition of four white dwarfs’ atmospheres, found during a survey of over 80 such stars located within 100 light-years of the Sun. What they found was a majority of the material was composed of elements found in our own Solar System: oxygen, magnesium, silicon and iron. Together these elements make up 93% of our planet.

In addition, a curiously low ratio of carbon was identified, indicating that rocky planets were at one time in orbit around the stars.

Since white dwarfs are the leftover cores of stellar-mass stars that have burnt through all their fuel, the material in their atmosphere is likely the leftover bits of planets. Once held in safe, stable orbits, when their stars neared the ends of their lives they expanded, possibly engulfing the innermost planets and disrupting the orbits of others, triggering a runaway collision effect that eventually shattered them all, forming an orbiting cloud of debris.

This could very well be what happens to our Solar System in four or five billion years.

“What we are seeing today in these white dwarfs several hundred light years away could well be a snapshot of the very distant future of the Earth,” said Professor Boris Gänsicke of the Department of Physics at the University of Warwick, who led the study. “During the transformation of the Sun into a white dwarf, it will lose a large amount of mass, and all the planets will move further out. This may destabilise the orbits and lead to collisions between planetary bodies as happened in the unstable early days of our solar systems.”

Three easy steps to planetary destruction. (© Mark A. Garlick / space-art.co.uk / University of Warwick)

One of the white dwarfs studied, labeled PG0843+516, may even be actively eating the remains of an once-Earthlike world’s core.

The researchers identified an abundance of heavier elements like iron, nickel and sulphur in the atmosphere surrounding PG0843+516. These elements are found in the cores of terrestrial planets, having sunk into their interiors during the early stages of planetary formation. Finding them out in the open attests to the destruction of a rocky world like ours.

Of course, being heavier elements, they will be the first to be accreted  by their star.

“It is entirely feasible that in PG0843+516 we see the accretion of such fragments made from the core material of what was once a terrestrial exoplanet,” Prof. Gänsicke said.

It’s an eerie look into a distant future, when Earth and the inner planets could become just some elements in a cloud.

Read the full story on the RAS site here.

 

Rogue Planets Can Find Homes Around Other Stars

In this artist's conception, a rogue planet drifts through space. Credit: Christine Pulliam (CfA)
In this artist's conception, a rogue planet drifts through space. Credit: Christine Pulliam (CfA)

[/caption]

As crazy as it sounds, free-floating rogue planets have been predicted to exist for quite some time and just last year, in May 2011, several orphan worlds were finally detected. Then, earlier this year, astronomers estimated that there could be 100,000 times more rogue planets in the Milky Way than stars. Now, the latest research suggests that sometimes, these rogue, nomadic worlds can find a new home by being captured into orbit around other stars. Scientists say this finding could explain the existence of some planets that orbit surprisingly far from their stars, and even the existence of a double-planet system.

“Stars trade planets just like baseball teams trade players,” said Hagai Perets of the Harvard-Smithsonian Center for Astrophysics.

Astronomers now understand that rogue planets are a natural consequence of both star and planetary formation. Newborn star systems often contain multiple planets, and if two planets interact, one can be ejected in a form of planetary billiards, kicked out of the star system to become an interstellar traveler.

But later, if a rogue planet encounters a different star moving in the same direction at the same speed, be captured into orbit around that star, say Perets and Thijs Kouwenhoven of Peking University, China, the authors of a new paper in The Astrophysical Journal.

A captured planet tends to end up hundreds or thousands of times farther from its star than Earth is from the Sun. It’s also likely to have a, orbit that’s tilted relative to any native planets, and may even revolve around its star backward.

Perets and Kouwenhoven simulated young star clusters containing free-floating planets. They found that if the number of rogue planets equaled the number of stars, then 3 to 6 percent of the stars would grab a planet over time. The more massive a star, the more likely it is to snag a planet drifting by.

While there haven’t actually been planets found yet that are definitely a ‘captured’ world, the best bet would perhaps be a planet in a distant orbit around a low-mass star. The star’s disk wouldn’t contain enough material to form a planet that distant, Perets and Kouwenhoven said.

The best evidence of a captured planet comes from the European Southern Observatory, which announced in 2006 the discovery of two planets (weighing 14 and 7 times Jupiter) orbiting each other without a star.

“The rogue double-planet system is the closest thing we have to a ‘smoking gun’ right now,” said Perets. “To get more proof, we’ll have to build up statistics by studying a lot of planetary systems.”

As for our own solar system, there’s no evidence at this time that our Sun could have captured an alien world, which would lie far beyond Pluto.

“There’s no evidence that the Sun captured a planet,” said Perets. “We can rule out large planets. But there’s a non-zero chance that a small world might lurk on the fringes of our solar system.”

Read the team’s paper.

Source: CfA

‘Nomad’ Planets Could Outnumber Stars 100,000 to 1

An artistic rendition of a nomad object wandering the interstellar medium. Credit: Greg Stewart / SLAC National Accelerator Laboratory

[/caption]

Could the number of wandering planets in our galaxy – planets not orbiting a sun — be more than the amount of stars in the Milky Way? Free-floating planets have been predicted to exist for quite some time and just last year, in May 2011, several orphan worlds were finally detected. But now, the latest research concludes there could be 100,000 times more free-floating planets in the Milky Way than stars. Even though the author of the study, Louis Strigari from the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), called the amount “an astronomical number,” he said the math is sound.

“Even though this is a large number, it is actually consistent with the amount of mass and heavy elements in our galaxy,” Strigari told Universe Today. “So even though it sounds like a big number, it puts into perspective that there could be a lot more planets and other ‘junk’ out in our galaxy than we know of at this stage.”

And by the way, these latest findings certainly do not lend any credence to the theory of a wandering planet named Nibiru.

Several studies have suggested that our galaxy could perhaps be swarming with billions of these wandering “nomad” planets, and the research that actually found a dozen or so of these objects in 2011 used microlensing to identify Jupiter-sized orphan worlds between 10,000 and 20,000 light-years away. That research concluded that based on the number of planets identified and the area studied, they estimated that there could literally be hundreds of billions of these lone planets roaming our galaxy….literally twice as many planets as there are stars.

But the new study from Kavli estimates that lost, homeless worlds may be up to 50,000 times more common than that.

Using mathematical extrapolations and relying on theoretical variables, Strigari and his team took into account the known gravitational pull of the Milky Way galaxy, the amount of matter available to make such objects and how that matter might be distributed into objects ranging from the size of Pluto to larger than Jupiter.

“What we did was we put together the observations of what the galaxy is made of, what kind of elements it has, as well as how much mass there could possibly be that has been deduced from the gravitational pull from the stars we observed,” Stigari said via phone. “There are a couple of general bounds we used: you can’t have more nomads in the galaxy than the matter we observe, as well as you probably can’t have more than the amount of so called heavy elements than we observe in the galaxy (anything greater that helium on the periodic table).”

But any study of this type is limited by the lack of understanding of planetary formation.

“We don’t at this stage have a good theory that tells us how planets form,” Strigari said, “so it is difficult to predict from a straight theoretical model how many of these objects might be wandering around the galaxy.”

Strigari said their approach was largely empirical. “We asked how many could there possibly be, consistent with the broad constraints, that gives us a limit to how many these objects could possibly exist.”

So, in absence of any theory that really predicts how many of these things should exist, the estimate of 100,000 times the amount of stars in the Milky Way is an upper limit.

“A lot of times in science and astronomy, in order to learn what the galaxy and universe is made of, we first have to ask questions, what is it not made of, and so you start from an upper bound of how many of these planets there could be,”Strigari said. “Maybe when our data gets better we will start reducing this limit and then we can start learning from empirical observations and start having more constrained observations that go into your theoretical models.”

In other words, Strigari said, it doesn’t mean this is the final answer, but this is the state of our knowledge right now. “It kind of quantifies our ignorance, you could say,” he said.

A good count, especially of the smaller objects, will have to wait for the next generation of big survey telescopes, especially the space-based Wide-Field Infrared Survey Telescope and the ground-based Large Synoptic Survey Telescope, both set to begin operation in the early 2020s.

So, where did all these potential free range planets come from? One option is that they formed like stars, directly from the collapse of interstellar gas clouds. According to Strigari some were probably ejected from solar systems. Some research has indicated that ejected planets could be rather common, as planets tend to migrate over time towards the star, and as they plow through the material left over from the solar system’s formation, any other planet between them and their star will be affected. Phil Plait explained it as, “some will shift orbit, dropping toward the star themselves, others will get flung into wide orbits, and others still will be tossed out of the system entirely.”

Don’t worry – our own solar system is stable now, but it could have happened in the past, and some research has suggested we originally started out with more planets in our solar system, but some may have been ejected.

Of course, when discussing planets, the first thing to pop into many people’s minds is if a wandering planet could be habitable.

“If any of these nomad planets are big enough to have a thick atmosphere, they could have trapped enough heat for bacterial life to exist,” Strigari said. Although nomad planets don’t bask in the warmth of a star, they may generate heat through internal radioactive decay and tectonic activity.

As far as a Nibiru-type wandering world in our solar system right now the answer is no. There is no evidence or scientific basis whatsoever for such a planet. If it was out there and heading towards Earth for a December 21, 2012 meetup, we would have seen it or its effects by now.

Sources: Stanford University, conversation with Louis Strigari

Recent Geologic Activity on the Moon?

Newly detected series of narrow linear troughs are known as graben, and they formed in highland materials on the lunar farside. These graben are located on a topographic rise with several hundred meters of relief revealed in topography derived from Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) stereo images (blues are lower elevations and reds are higher elevations). Image Credit: NASA/GSFC/Arizona State University/Smithsonian Institution

[/caption]
Recent images from NASA’s Lunar Reconnaissance Orbiter Camera provide evidence that the lunar crust may be pulling apart in certain areas. The images reveal small trenches less than a kilometer in length, and less than a few hundred meters wide. Only a small number of these features, known as graben, have been discovered on the lunar surface.

There are several clues in the high-resolution images that provide evidence for recent geologic activity on the Moon.

The LROC team detected signs of contraction on the lunar surface as early as August of 2010. The contractions were in the form of lobe-shaped ridges known as lobate scarps. Based on the data, the team suggests the widely-distributed scarps indicate the Moon shrank in diameter, and may be continuing to shrink. Interestingly enough, the new image data featuring graben presents a contradiction, as they indicate lunar crust being pulled apart and theorize that the process that created the graben may have occurred within the past 50 million years.

“We think the Moon is in a general state of global contraction due to cooling of a still hot interior, said thomas Watters from the Center for Earth and Planetary Studies. “The graben tell us that forces acting to shrink the Moon were overcome in places by forces acting to pull it apart. This means the contractional forces shrinking the Moon cannot be large, or the small graben might never form.”

Based on the size of the graben, the forces responsible for contraction of the lunar surface are assumed to be fairly weak. It is further theorized that, unlike the early terrestrial planets, the Moon was not completely molten during its early history.

“It was a big surprise when I spotted graben in the farside highlands,” said Mark Robinson, LROC Principal Investigator at Arizona State University. “I immediately targeted the area for high resolution stereo images so we could create a 3-dimensional view of the graben. It’s exciting when you discover something totally unexpected. Only about half the lunar surface has been imaged in high resolution. There is much more of the Moon to be explored.”

If you’d like to learn more about the recently discovered graben on the moon, you can watch a short video by Thomas Watters below:

To learn more about the Lunar Reconnaissance Orbiter Camera, visit: http://www.lroc.asu.edu/

Source: Arizona State University News

Scientists Find New Clues About the Interiors of ‘Super-Earth’ Exoplanets

Artist's conception of "Super-Earth" exoplanet Kepler-22b, which is about 2.4 times larger than Earth. Credit: NASA.

[/caption]

As we learned in science class in school, the Earth has a molten interior (the outer core) deep beneath its mantle and crust. The temperatures and pressures are increasingly extreme, the farther down you go. The liquid magmas can “melt” into different types, a process referred to as pressure-induced liquid-liquid phase separation. Graphite can turn into diamond under similar extreme pressures. Now, new research is showing that a similar process could take place inside “Super-Earth” exoplanets, rocky worlds larger than Earth, where a molten magnesium silicate interior would likely be transformed into a denser state as well.

Simply put, the magnesium silicate undergoes what’s called a phase change while in the liquid state. The scientists were able to replicate the extreme temperatures and pressures that would be found inside those exoplanets by using the Janus laser at the Lawrence Livermore National Laboratory and OMEGA at the University of Rochester. A powerful laser pulse generated a shock wave as it passed through the samples. Changes in the velocity of the shock and the temperature of the sample indicated when a phase change was detected.

Interestingly, the different liquid states of the silicate magma in the experiments showed different physical properties under high pressures and temperatures, even though they were still of the same composition. Due to varying densities, the different liquid states tended to want to separate, much like oil and water.

The findings should help to better understand the interiors of terrestrial-type exoplanets, whether they are “Super-Earths” or smaller, like Earth or Mars.

Lead scientist Dylan Spaulding, at the University of California, Berkeley, states: “Phase changes between different types of melts have not been taken into account in planetary evolution models. But they could have played an important role during Earth’s formation and may indicate that extra-solar ‘Super-Earth’ planets are structured differently from Earth.”

The paper was published in the February 10, 2012 edition of the journal Physical Review Letters.

How Well Can Astronomers Study Exoplanet Atmospheres?

Artist's impression of exoplanets around other stars. Credits: ESA/AOES Medialab

[/caption]

Exoplanet discoveries are happening at a frenetic pace, and some of the latest newly discovered worlds are sometimes described as “Earth-Like” and “potentially habitable.”

The basis of this comparison is, in many cases, based on the distance between the exoplanet and its host star. Unfortunately the distance between a planet and its host star is only half the picture. The other half is determining if an exoplanet has an atmosphere, and what the contents of said atmosphere may be.

Basically, just because an exoplanet is in the “habitable zone” around its host star, it may not necessarily be habitable. If an exoplanet has a thick, crushing, Venus-Like atmosphere, it would most likely be too hot for surface water. The opposite holds true as well, as it could be entirely possible for an exoplanet to have a thin, wispy Mars-like atmosphere where any water would be locked up as ice.

At this point, how well can astronomers study the atmosphere around an exoplanet?

The spectrum from a giant exoplanet, orbiting around the bright, young, star HR 8799. Image Credit: ESO/M. Janson
Currently, there are only a handful of methods researchers can use to make estimates of exoplanet atmospheres. Interestingly enough, one method makes use of the light coming from the host star. The basic principle is that the light from a star can be analyzed both before and after an exoplanet crosses in front of the star. By comparing the spectrum from the host star, and the spectrum of an exoplanet, the tell-tale signs of atmospheric contents can be detected.

Methods to detect the atmospheric composition of such distant worlds are fairly new, as shown by work done with the Spitzer Space Telescope and ESO’s Very Large Telescope

Recently, astronomers from The Sternberg Astronomical Institute at Moscow State University used data from the Hubble Space Telescope in an attempt to better detect atmospheres around exoplanets. Abubekerov and team created mathematical models to analyze light curves from distant stars. In the case of Abubekerov’s research, the selected star was HD 189733 – a K-class star a bit cooler and smaller than our Sun.

About 60 light-years from Earth, HD 189733 also happens to have a binary companion orbiting it at a radius of about 200 A.U. So far, one exoplanet is known to orbit HD 189733. Discovered in 2005, HD 189733 b is a roughly Jupiter-size exoplanet which orbits its host star in just over two days. While not mentioned directly in Abubekerov’s paper, other studies have detected methane, carbon monoxide, water vapor and sodium in HD 189733 b’s atmosphere.

Light curve from HD 189733 in 5500 - 6000 angstrom range.
By applying their models to the light curves from HD 189733, Abubekerov’s team was able to better understand how light at different wavelengths behaves when an exoplanet crosses in front of its host star.

According to Abubekerov and team, the end result of their research was unsuccessful. The team suspects dark spot activity on HD 189733 was a contributing factor to their models not agreeing with actual observations.

The team stressed that additional observational data from HD 189733 when spot activity is negligible would be required to further refine their work. Despite their models not being successful, the team is confident that exoplanet radius increases with decreasing wavelength, which may imply the presence of an atmosphere.

Research such as Abubekerov’s will help astronomers build better models and pave the way for “sniffing” exoplanet atmospheres. Newer technology such as the James Webb Space Telescope and the European Extremely Large Telescope will also provide better data. In the not-too-distant future, astronomers and astrobiologists should be able to examine the atmospheres of exoplanets in the habitable zone.

If you’d like to read the full research paper, you can access a pre-print version at: http://arxiv.org/pdf/1201.4043v1.pdf

Source(s): Analysis of Light Curves of Eclipsing Systems with Exoplanets:
HD 189733. M. K. Abubekerov, N. Yu. Gostev, and A. M. Cherepashchuk
, Extrasolar Planets Encyclopaedia

Goldilocks Moons

The Goldilocks Zones around various type stars. Credit: NASA/JPL-Caltech

[/caption]

The search for extraterrestrial life outside our Solar System is currently focused on extrasolar planets within the ‘habitable zones’ of exoplanetary systems around stars similar to the Sun. Finding Earth-like planets around other stars is the primary goal of NASA’s Kepler Mission.

The habitable zone (HZ) around a star is defined as the range of distances over which liquid water could exist on the surface of a terrestrial planet, given a dense enough atmosphere. Terrestrial planets are generally defined as rocky and similar to Earth in size and mass. A visualization of the habitable zones around stars of different diameters and brightness and temperature is shown here. The red region is too hot, the blue region is too cold, but the green region is just right for liquid water. Because it can be described this way, the HZ is also referred to as the “Goldilocks Zone”.

Normally, we think of planets around other stars as being similar to our solar system, where a retinue of planets orbits a single star. Although theoretically possible, scientists debated whether or not planets would ever be found around pairs of stars or multiple star systems. Then, in September, 2011, researchers at NASA’s Kepler mission announced the discovery of Kepler-16b, a cold, gaseous, Saturn-sized planet that orbits a pair of stars, like Star Wars’ fictional Tatooine.

This week I had the chance to interview one of the young guns studying exoplanets, Billy Quarles. Monday, Billy and his co-authors, professor Zdzislaw Musielak and associate professor Manfred Cuntz, presented their findings on the possibility of Earth-like planets inside the habitable zones of Kepler 16 and other circumbinary star systems, at the AAS meeting in Austin, Texas.

The Goldilocks Zones around various type stars. Credit: NASA/JPL-Caltech

“To define the habitable zone we calculate the amount of flux that is incident on an object at a given distance,” Billy explained. “We also took into account that different planets with different atmospheres will retain heat differently. A planet with a really weak greenhouse effect can be closer in to the stars. For a planet with a much stronger greenhouse effect, the habitable zone will be further out.”

“In our particular study, we have a planet orbiting two stars. One of the stars is much brighter than the other. So much brighter, that we ignored the flux coming from the smaller fainter companion star altogether. So our definition of the habitable zone in this case is a conservative estimate.”

Quarles and his colleagues performed extensive numerical studies on the long-term stability of planetary orbits within the Kepler 16 HZ. “The stability of the planetary orbit depends on the distance from the binary stars,” said Quarles. “The further out the more stable they tend to be, because there is less perturbation from the secondary star.”

For the Kepler 16 system, planetary orbits around the primary star are only stable out to 0.0675 AU (astronomical units). “That is well inside the inner limit of habitability, where the runaway greenhouse effect takes over,” Billy explained. This all but rules out the possibility of habitable planets in close orbit around the primary star of the pair. What they found was that orbits in the Goldilocks Zone farther out, around the pair of Kepler 16’s low-mass stars, are stable on time scales of a million years or more, providing the possibility that life could evolve on a planet within that HZ.

Kepler 16's orbit from Quarles et al

Kepler 16b’s roughly circular orbit, about 65 million miles from the stars, is on the outer edge of this habitable zone. Being a gas giant, 16b is not a habitable terrestrial planet. However, an Earth-like moon, a Goldilocks Moon, in orbit around this planet could sustain life if it were massive enough to retain an Earth-like atmosphere. “We determined that a habitable exomoon is possible in orbit around Kepler-16b,” Quarles said.

I asked Quarles how stellar evolution impacts these Goldilocks Zones. He told me, “There are a number of things to consider over the lifetime of a system. One of them is how the star evolves over time. In most cases the habitable zone starts out close and then slowly drifts out.”

During a star’s main sequence lifetime, nuclear burning of hydrogen builds up helium in its core, causing an increase in pressure and temperature. This occurs more rapidly in stars that are more massive and lower in metallicity. These changes affect the outer regions of the star, which results in a steady increase in luminosity and effective temperature. The star becomes more luminous, causing the HZ to move outwards. This movement could result in a planet within the HZ at the beginning of a star’s main sequence lifetime, to become too hot, and eventually, uninhabitable. Similarly, an inhospitable planet originally outside the HZ, may thaw out and enable life to commence.

“For our study, we ignored the stellar evolution part,” said lead author, Quarles. “We ran our models for a million years to see where the habitable zone was for that part of the star’s life cycle.”

Being at the right distance from its star is only one of the necessary conditions required for a planet to be habitable. Habitable conditions on a planet require various geophysical and geochemical conditions. Many factors can prevent, or impede, habitability. For example, the planet may lack water, gravity may be too weak to retain a dense atmosphere, the rate of large impacts may be too high, or the minimum ingredients necessary for life (still up for debate) may not be there.

One thing is clear. Even with all the requirements for life as we know it, there appear to be plenty of planets around other stars, and very likely, Goldilocks Moons around planets, orbiting within the habitable zones of stars in our galaxy, that detecting the signature of life in the atmosphere of a planet or moon around another Sun seems like only a matter of time now.