Hubble’s 1923 Nova in Andromeda Erupts Again!

M31N 1923-12c in Andromeda, position plotted by the AAVSO Chart Plotter


On December 11, 1923, Edwin Hubble discovered a nova in the Andromeda galaxy. Novae occurring in our Milky Way’s sister galaxy have proven to be not that uncommon, as there have been over 800 novae detected in M31 in the last 100 years. Hubble’s 1923 discovery became known as M31N 1923-12c, the third nova discovered in December of 1923.

Fast forward to January 21, 2012, and another nova has been discovered in M31, already the second novae seen in January 2012. K. Nishiyama and F. Kabashima reported the discovery and it has been given the designation, PNV J00423804+4108417. A day later, a spectrum was taken with the 9.2m Hobby-Eberly Telescope using the Marcario Low-Resolution Spectrograph, confirming the new nova in M31, and that it is a member of the He/N spectroscopic class.

What’s even more interesting, however, is that the new nova likely comes from the same progenitor as Hubble’s 1923 nova!

Artist's rendition of the recurrent nova RS Oph Credit: David Hardy/PPARC

Classical novae are a subclass of cataclysmic variable stars. They are semi-detached binary systems where an evolved, late-type star fills its Roche lobe and transfers mass to its white dwarf companion. If the mass accretion rate onto the white dwarf is sufficiently low, it allows this gas to pile up and become degenerate. Eventually, after thousands to tens of thousands of years, a thermonuclear runaway ensues in this highly pressurized layer of gas, leading to a nova eruption. These eruptions can reach an absolute magnitude as bright as about MV -10, making them among the most luminous explosions in the Universe. Their high luminosities and rates, about 50 per year in a galaxy like M31, make novae very useful to astronomers exploring the properties of close binaries in extragalactic stellar populations.

Comparing its position with the approximately 900 novae in W. Pietsch’s M31 nova catalog revealed that PNV J00423804+4108417 was located about six arc seconds from the cataloged position of M31N 1923-12c, the nova discovered by Edwin Hubble on December 11, 1923. Given that the positions of M31 novae from early photographic surveys were typically reported to a precision of only ten arc seconds, and that He/N spectra are often associated with recurrent novae, astronomers considered the possibility that M31N 1923-12c and PNV J00423804+4108417 represented two outbursts arising from the same nova progenitor. To explore this possibility further, F. Schweizer (Carnegie Observatories) located Hubble’s original plate in the Carnegie Observatories archives and performed an eyeball comparison of the position of Hubble’s nova with that of PNV J00423804+4108417, finding them to match within ~1.5″. You can see the images for yourself here.

Edwin Hubble

After digitally scanning the Hubble plate and comparing the position of the nova relative to those of three nearby USNO reference stars, analysis revealed that M31N 1923-12c was located
at R.A. = 00 42 38.06; Decl. = 41 08 41.0 (J2000). Hubble’s M31N 1923-12c and this year’s PNV J00423804+4108417 are the same object!

88 years and a handful of days later, PNV J00423804+4108417 represents the second recorded outburst of the recurrent nova M31N 1923-12c. Like the telescope named for him, Hubble’s legacy to astronomy and astrophysics continues to grow to this very day. Way to go, Edwin.

This blog post adapted from Astronomer’s Telegram #3914
M31N 1923-12c is a recurrent nova in M31
Authors: A. W. Shafter (SDSU), M. J. Darnley, M. F. Bode (Liverpool JMU, UK), R. Ciardullo (PSU), F. Schweizer (Carnegie Observatories)

Goldilocks Moons

The Goldilocks Zones around various type stars. Credit: NASA/JPL-Caltech


The search for extraterrestrial life outside our Solar System is currently focused on extrasolar planets within the ‘habitable zones’ of exoplanetary systems around stars similar to the Sun. Finding Earth-like planets around other stars is the primary goal of NASA’s Kepler Mission.

The habitable zone (HZ) around a star is defined as the range of distances over which liquid water could exist on the surface of a terrestrial planet, given a dense enough atmosphere. Terrestrial planets are generally defined as rocky and similar to Earth in size and mass. A visualization of the habitable zones around stars of different diameters and brightness and temperature is shown here. The red region is too hot, the blue region is too cold, but the green region is just right for liquid water. Because it can be described this way, the HZ is also referred to as the “Goldilocks Zone”.

Normally, we think of planets around other stars as being similar to our solar system, where a retinue of planets orbits a single star. Although theoretically possible, scientists debated whether or not planets would ever be found around pairs of stars or multiple star systems. Then, in September, 2011, researchers at NASA’s Kepler mission announced the discovery of Kepler-16b, a cold, gaseous, Saturn-sized planet that orbits a pair of stars, like Star Wars’ fictional Tatooine.

This week I had the chance to interview one of the young guns studying exoplanets, Billy Quarles. Monday, Billy and his co-authors, professor Zdzislaw Musielak and associate professor Manfred Cuntz, presented their findings on the possibility of Earth-like planets inside the habitable zones of Kepler 16 and other circumbinary star systems, at the AAS meeting in Austin, Texas.

The Goldilocks Zones around various type stars. Credit: NASA/JPL-Caltech

“To define the habitable zone we calculate the amount of flux that is incident on an object at a given distance,” Billy explained. “We also took into account that different planets with different atmospheres will retain heat differently. A planet with a really weak greenhouse effect can be closer in to the stars. For a planet with a much stronger greenhouse effect, the habitable zone will be further out.”

“In our particular study, we have a planet orbiting two stars. One of the stars is much brighter than the other. So much brighter, that we ignored the flux coming from the smaller fainter companion star altogether. So our definition of the habitable zone in this case is a conservative estimate.”

Quarles and his colleagues performed extensive numerical studies on the long-term stability of planetary orbits within the Kepler 16 HZ. “The stability of the planetary orbit depends on the distance from the binary stars,” said Quarles. “The further out the more stable they tend to be, because there is less perturbation from the secondary star.”

For the Kepler 16 system, planetary orbits around the primary star are only stable out to 0.0675 AU (astronomical units). “That is well inside the inner limit of habitability, where the runaway greenhouse effect takes over,” Billy explained. This all but rules out the possibility of habitable planets in close orbit around the primary star of the pair. What they found was that orbits in the Goldilocks Zone farther out, around the pair of Kepler 16’s low-mass stars, are stable on time scales of a million years or more, providing the possibility that life could evolve on a planet within that HZ.

Kepler 16's orbit from Quarles et al

Kepler 16b’s roughly circular orbit, about 65 million miles from the stars, is on the outer edge of this habitable zone. Being a gas giant, 16b is not a habitable terrestrial planet. However, an Earth-like moon, a Goldilocks Moon, in orbit around this planet could sustain life if it were massive enough to retain an Earth-like atmosphere. “We determined that a habitable exomoon is possible in orbit around Kepler-16b,” Quarles said.

I asked Quarles how stellar evolution impacts these Goldilocks Zones. He told me, “There are a number of things to consider over the lifetime of a system. One of them is how the star evolves over time. In most cases the habitable zone starts out close and then slowly drifts out.”

During a star’s main sequence lifetime, nuclear burning of hydrogen builds up helium in its core, causing an increase in pressure and temperature. This occurs more rapidly in stars that are more massive and lower in metallicity. These changes affect the outer regions of the star, which results in a steady increase in luminosity and effective temperature. The star becomes more luminous, causing the HZ to move outwards. This movement could result in a planet within the HZ at the beginning of a star’s main sequence lifetime, to become too hot, and eventually, uninhabitable. Similarly, an inhospitable planet originally outside the HZ, may thaw out and enable life to commence.

“For our study, we ignored the stellar evolution part,” said lead author, Quarles. “We ran our models for a million years to see where the habitable zone was for that part of the star’s life cycle.”

Being at the right distance from its star is only one of the necessary conditions required for a planet to be habitable. Habitable conditions on a planet require various geophysical and geochemical conditions. Many factors can prevent, or impede, habitability. For example, the planet may lack water, gravity may be too weak to retain a dense atmosphere, the rate of large impacts may be too high, or the minimum ingredients necessary for life (still up for debate) may not be there.

One thing is clear. Even with all the requirements for life as we know it, there appear to be plenty of planets around other stars, and very likely, Goldilocks Moons around planets, orbiting within the habitable zones of stars in our galaxy, that detecting the signature of life in the atmosphere of a planet or moon around another Sun seems like only a matter of time now.

Supernova Alphabet Soup

SN 2011fe aka PTF11kly Image credit: Wikipedia


The International Astronomical Union (IAU) is the sole body responsible for the official naming of astronomical objects. So if you have a problem with the way things in the Universe are named, you now know where to send your email and letters of protest.

Before we get into this, a quick grammar note. When we discuss more than one supernova, they are called supernovae (super- no- vee), not supernovas. The same holds true for more than one nova. They are novae (no- vee). Please don’t write and ask me about Novas. Those are old Chevrolets, not stars.

Fortunately, the naming convention used for supernovae is pretty simple and straightforward.

The name is formed by combining the prefix SN, for supernova, the year of discovery and a one- or two-letter designation. The first 26 supernovae of the year get an upper case letter from A to Z (SN 1987A). After that, we start over with pairs of lower-case letters are used, starting with aa, ab, and so on (SN 2005ap).

Of course there are exceptions, there are always exceptions. That’s one of the things about astronomical nomenclature that is maddening, but I digress…

Four important historical supernovae are known simply by the year they occurred- SN 1006, SN 1054, SN 1572 (more commonly referred to as Tycho’s Nova), and SN 1604 (also known as Kepler’s Star).

One reason I’m bringing this subject up now is that we are ending the year, so we are approaching the time where we reset the naming schema for 2012 and the first supernova of the new year will get named SN 2012A. With the annual number of discoveries rising each year to well over 500, it is always a bit surprising how long it takes for that first one of the year to get named. So each year we hold an unofficial contest to see who will discover the first SN of the new year.

One of the reasons it usually doesn’t occur on the first day of the year is that supernova discoveries have to be officially confirmed spectroscopically before they get an official IAU designation. When someone discovers a possible supernova it gets reported to the IAU and then listed on the CBAT Transient Objects Confirmation Page. If it is a possible SN it gets a temporary designation of PSN (possible supernova) followed by its coordinates (PSN J01560719+1738468).

Only after someone has taken a spectrum confirming it is a supernova does it get a name with the year and letter combination. This can take several days, so it is unlikely a SN discovered on January 1 will be named until later in the week or the second week of the month. If it were discovered on December 23rd and confirmed on the 1st of January it would still get a name from the previous year.

This time lag will not be acceptable in the near future, with surveys like LSST coming on line. Astronomers will want immediate notification of discoveries of all types of transient objects including supernovae, so what has happened is new groups searching for SNe have begun to make up their own names.

The Catalina Real Time Survey is one such group. They are discovering dozens of possible supernovae that don’t always get official IAU designations. Their discoveries are all named CSS (Catalina Sky Survey) followed by the date in yymmdd format and then the rough coordinates, like this CSS111227:104742+021815. Crazy, huh?

ROTSE, the Robotic Optical Transient Search Experiment, also discoveries SNe and gives them their own designation in the form of ROTSE3 (the third iteration of this experiment) followed by coordinates, such as ROTSE3 J133033.0-313427.

And there is the Palomar Transient Factory which names its discoveries with the prefix PTF of course, such as PTF11kly, the nearest supernovae in decades, visible with small telescopes in M101. This SN eventually received an IAU designation, SN 2011fe, but that just created more confusion, since now it is known variously by both names in the literature.

Somehow managing to keep it all together amidst the confusion, David Bishop maintains the Latest Supernova Website where you can see discovery images and keep track of your favorite supernovae and related news. There is an excellent article about David and how his website evolved from simple beginnings.

So if you’re asking WTF? about the latest SNe the on the WWW the URL that will lead you through the ABC’s is definitely

Got that? Good, there will be a quiz later…

20 Million Observations by Amateur Astronomers!

Graph showing the rapidly growing number of observations in the AAVSO International Database. Courtesy AAVSO.

[/caption]Early into the celebration of its centennial year, observers of the American Association of Variable Star Observers (AAVSO) passed another milestone over the weekend, when an amateur astronomer from Belgium contributed the 20 millionth observation of a variable star on February 19, 2011.

Amateur astronomers have been recording changes in the brightness of stars for centuries. The world’s largest database is run by the AAVSO. Started in 1911, it is one of the oldest, continuously operating citizen science projects in the world.

“The long-term study of stellar brightness variation is critical to understanding how stars work and the impact they have on their surroundings. The noble efforts of the engaged AAVSO volunteers play an important role in astronomy and help expand human knowledge,” said Dr. Kevin Marvel, Executive Officer of the American Astronomical Society.

The AAVSO currently receives variable star brightness estimates from about 1,000 amateur astronomers per year. Some variable stars are bright enough to be seen with the unaided eye while others require high-tech equipment. The AAVSO also has a network of robotic telescopes available to members free of charge.

“Because some variable stars are unpredictable and/or change their brightness over long time scales, it is not practical for professional astronomers to watch them every night. Thus, amateurs were recruited to keep tabs on these stars on behalf of professionals,” Dr. Arne Henden, Director of the AAVSO, said.

The 20 millionth observation was made by Dr. Franz-Josef “Josch” Hambsch of Belgium. The observation was of GV Andromeda, member of a class of older, pulsating stars smaller than our Sun. “I like these stars because you can see their entire variation cycle in one night. There have not been many recent observations made of this particular star, so that is why I am monitoring it,” Hambsch said. Hambsch is also a member of the Belgian variable star organization, Vereniging Voor Sterrenkunde, Werkgroep Veranderlijke Sterren (VVS, WVS).

Actual light curve of GV And created from Josch Hambsh's data. One of these points is the 20 millionth observation! Courtesy AAVSO.

The process of estimating a star’s brightness can range from less than a minute to many hours per estimate, but typically takes about five minutes. At that rate, observers have invested the equivalent of about 1.67 million hours of time in collecting observations for the database. Assuming a current median salary of US$33,000, this would be the roughly equivalent to 27.5 million dollars worth of donated time if all the observations were reported today.

“The reality is these observations are invaluable. The database spans many generations and includes data that cannot be reproduced elsewhere. If an astronomer wants to know the history of a particular star, they come to the AAVSO,” Henden said.

The AAVSO’s mission is to coordinate, collect, and distribute variable star data to support scientific research and education. The AAVSO International Database is openly available to the public through their web site (, where it is queried hundreds of times per day.

Solving the Mystery of Dark Gamma Ray Bursts

Artists impression of a dark gamma-ray burst. Credit: ESO

Unraveling the mystery of Gamma Ray Bursts (GRBs) is a story filled with international intrigue, fantastic claims, serious back-tracking, and incremental improvements in our understanding of the true nature and implications of the most energetic, destructive forces in the Universe. New results from a team of scientists studying so-called “dark gamma-ray bursts” have firmly snapped a new piece into the GRB puzzle. This research is presented in a paper to appear in the journal Astronomy & Astrophysics on December 16, 2010.

The discovery of GRBs was an unexpected result of the American space program and the military keeping tabs on the Russians to verify compliance with a cold war nuclear test ban treaty. In order to be sure the Russians weren’t detonating nuclear weapons on the far side of the Moon, the 1960’s era Vela spacecraft were equipped with gamma ray detectors. The Moon might shield the obvious signature of x-rays from the far side, but gamma rays would penetrate right through the Moon and would be detectible by the Vela satellites.

By 1965, it became apparent that events which triggered the detectors but were clearly not signatures of nuclear detonations, so they were carefully, and secretly, filed away for future study. In 1972, astronomers were able to deduce the directions to the events with sufficient accuracy to rule out the Sun and Earth as sources. They came to the conclusion that these gamma-ray events were “of cosmic origin”. In 1973, this discovery was announced in the Astrophysical Journal.

This created quite stir in the astronomical community and dozens of papers on GRBs and their causes began appearing in the literature. Initially, most hypothesized the origin of these events came from within our own galaxy. Progress was painfully slow until the 1991 launch of the Compton Gamma Ray Observatory. This satellite provided crucial data indicating that the distribution of GRBs is not biased towards any particular direction in space, such as toward the galactic plane or the center of the Milky Way Galaxy. GRBs came from everywhere all around us. They are “cosmic” in origin. This was a big step in the right direction, but created more questions.

For decades, astronomers searched for a counterpart, any astronomical object coincident with a recently observed burst. But the lack of precision in the location of GRBs by the instruments of the day frustrated attempts to pin down the sources of these cosmic explosions. In 1997, BeppoSAX detected a GRB in x-rays shortly after an event and the optical after glow was detected 20 hours later by the William Herschel Telescope. Deep imaging was able to identify a faint, distant galaxy as the host of the GRB. Within a year the argument over the distances to GRBs was over. GRBs occur in extremely distant galaxies. Their association with supernovae and the deaths of very massive stars also gave clues to the nature of the systems that produce GRBs.

It wasn’t too long before the race to identify optical afterglows of GRBs heated up and new satellites helped pinpoint the locations of these after glows and their host galaxies. The Swift satellite, launched in 2004, is equipped with a very sensitive gamma ray detector as well as X-ray and optical telescopes, which can be rapidly slewed to observe afterglow emissions automatically following a burst, as well as send notification to a network of telescopes on the ground for quick follow up observations.

Today, astronomers recognize two classifications of GRBs, long duration events and short duration events. Short gamma-ray bursts are likely due to merging neutron stars and not associated with supernovae. Long-duration gamma-ray bursts (GRBs) are critical in understanding the physics of GRB explosions, the impact of GRBs on their surroundings, as well as the implications of GRBs on early star formation and the history and fate of the Universe.

While X-ray afterglows are usually detected for each GRB, some still refused to give up their optical afterglow. Originally, those GRBs with X-ray but without optical afterglows were coined “dark GRBs”. The definition of “dark gamma-ray burst” has been refined, by adding a time and brightness limit, and by calculating the total output of energy of the GRB.

This lack of an optical signature could have several origins. The afterglow could have an intrinsically low luminosity. In other words, there may just be bright GRBs and faint ones. Or the optical energy could be strongly absorbed by intervening material, either locally around the GRB or along the line-of-sight through the host galaxy. Another possibility is that the light could be at such a high redshift that blanketing and absorption by the intergalactic medium would prohibit detection in the R band frequently used to make these detections.

In the new study, astronomers combined Swift data with new observations made using GROND, a dedicated GRB follow-up instrument attached to the 2.2-metre MPG/ESO telescope at La Silla in Chile. GROND is an exceptional tool for the study of GRB afterglows. It can observe a burst within minutes of an alert coming from Swift, and it has the ability to observe through seven filters simultaneously, covering the visible and near-infrared parts of the spectrum.

By combining GROND data taken through these seven filters with Swift observations, astronomers were able to accurately determine the amount of light emitted by the afterglow at widely differing wavelengths, all the way from high energy X-rays to the near-infrared. They then used this data to directly measure the amount of obscuring dust between the GRB and observers on Earth. Thankfully, the team has found that dark GRBs don’t require exotic explanations.

What they found is that a significant proportion of bursts are dimmed to about 60–80 percent of their original intensity by obscuring dust. This effect is exaggerated for the very distant bursts, letting the observer see only 30–50 percent of the light. By proving this to be so, these astronomers have conclusively solved the puzzle of the missing optical afterglows. Dark gamma-ray bursts are simply those that have had their visible light completely stripped away before it reaches us.

Asteroid Scheila Sprouts a Tail and Coma

(596) Scheila, the asteroid with a tail. Image credit: Peter Lake

When is an asteroid not an asteroid? When it turns out to be a comet, of course. Has this ever happened before? Why, yes it has. In fact it was just announced December 12, 2010 that the asteroid (596) Scheila has sprouted a tail and coma! This is likely a comet that has been masquerading as an asteroid.

Taken from New Mexico Skies between 8h15m and 11h45m UT. The image is a stack of 10 x 600 sec exposures using a 20 inch RCOS and STL11K camera. Scale is 0.91 asec/px.. Image courtesy of Joseph Brimacombe

See an animation by Joseph Brimacombe at this link.

Steve Larson of the Lunar and Planetary Laboratory (LPL), University of Arizona first reported that images of the minor planet (596) Scheila taken on December 11th showed the object to be in outburst, with a comet-like appearance and an increase in brightness from magnitude 14.5 to 13.4. The cometary appearance of the object was confirmed by several other observers within hours.

A quick check of archived Catalina images of Scheila from October 18, November 2 and November 11 showed Scheila to look star-like, which is what asteroids look like from Earth. They just happen to be moving across the field of view in contrast to the fixed background stars. The image taken by Catalina on December 3rd shows some slight diffuseness and an increase in overall brightness. So, it appears this event began on or around December 3rd.

Upon hearing the news, there was some speculation that this might be evidence of an impact event. Had something crashed into asteroid Scheila? It seems unlikely, and this is a story we have heard before.

The asteroid discovered in 1979 and named 1979 OW7 was lost to astronomers for years and then recovered in 1996. It was subsequently renamed 1996 N2. That same year it was discovered to have a comet-like appearance, and many believed this was the signature of an impact between two asteroids. After years of inactivity 1996 N2 sprouted a tail again in 2002. One collision between two asteroids was unlikely enough. The odds of it happening again to the same object were essentially zero. What we had was a comet masquerading as an asteroid. This object is now known by its cometary name 133P/Elst-Pizarro, named after the two astronomers who discovered its initial cometary outburst.

The 2002 outburst and the discovery of more active asteroids showing mass-loss led to a paper (Hsieh and Jewitt 2006, Science, 312, 561-563) introducing an entirely new class of solar system objects, Main Belt Comets (MBC). MBCs look like comets because they show comae and have tails but they have orbits inside Jupiter’s orbit like main belt asteroids.

The most likely cause of the mass loss activity in MBCs is sublimation of water ice as the surface of the MBC is heated by the Sun. This is suggested most strongly by the behavior of the best-studied example, namely 133P/Elst-Pizarro. Its activity is recurrent, and it is strongest near and after perihelion, the point in its orbit nearest the Sun, like other comets.

MBCs are interesting to astronomers because they appear to be a third reservoir of comets in our solar system, distinct from the Oort cloud and Kuiper belt. Since we know of no way for these other reservoirs to have deposited comets in the inner solar system, the ice in MBCs probably has a different history than the ice in the outer comets. This allows researchers to study the differences in the Sun’s proto-planetary disk at three separate locations. This might lead to information on the Earth’s oceans, one of the continuing lines of investigation by solar system scientists.

Now it seems we have another MBC to add to the sample. And Scheila will probably be getting a new name soon. Asteroid (596) Scheila was discovered Feb. 21, 1906, by A. Kopff at Heidelberg. The 113Km in diameter ‘asteroid’ was named after an acquaintance, an English student at Heidelberg. In the future it will be called XXXP/Lawson or something similar, and Kopff’s Scheila will become just another footnote in the history of astronomical nomenclature.

Venus Has a Moon?

Venusian quasi-satellite 2002 VE68. Illustration: NASA/JPL/Caltech


Astronomers have been busy trying to determine the spin period and composition of Venus’ moon. December 8, 2010, results were announced by JPL/Caltech scientists, led by Michael Hicks.

“Wait a minute; back up”, I hear you ask. “Venus has a Moon?”
Of course it does. Well, kind of…
Let me explain.

It has the rather unfortunate name of 2002 VE68. That is because it was discovered on November 11, 2002 by LONEOS, the Lowell Observatory Near Earth Object Search. 2002 VE68 is an earth orbit-crossing asteroid that has been designated a Potential Hazardous Asteroid by the Minor Planet Center. For obvious reasons, this makes it a very interesting subject of study for JPL scientists.

2002 VE68 used to be a run of the mill, potential impact threat, Near Earth Object. But approximately 7000 years ago it had a close encounter with Earth that kicked it into a new orbit. It now occupies a place in orbit around the Sun where at its closest it wanders inside the orbit of Mercury and at its furthest it reaches just outside the orbit of the Earth. It is now in a 1:1 orbital resonance with Venus.

An orbital resonance is when two orbiting bodies exert a regular, periodic gravitational influence on each other due to their orbital periods being related by a ratio of two small numbers. For example, Pluto and Neptune are in an orbital resonance of 2:3, which simply means for every two times Pluto goes around the Sun, Neptune makes three trips around.

In the case of Venus and 2002 VE68, they both take the same time to orbit the Sun once. They are in a 1:1 orbital resonance. So by definition, 2002 VE68 is considered a quasi-satellite of Venus. If you watch the Orbital Viewer applet at the JPL small body page you can watch this celestial dance as the two bodies orbit the Sun and each other as 2002 VE68 dodges Earth and Mercury in the process.

Often these resonances result in an unstable interaction, in which the bodies exchange momentum and shift orbits until the resonance no longer exists. In this case, scientists believe 2002 VE68 will only remain a Venusian quasi-satellite for another 500 years or so.

So getting back to the story, Hicks and his team used the recent close apparition of 2002 VE68 to do photometric measurements over the course of three nights in November using the JPL Table Mountain 0.6m telescope near Wrightwood, California. From the color data they obtained they determined that 2002 VE68 is an X type asteroid. This is a group of asteroids with very similar spectra that could potentially have a variety of compositions. They are further broken down into Tholen classification types as either E, M or P types. Unfortunately Hicks’ team was not able to resolve the sub-classification with their equipment.

They were able to determine the approximate size of the asteroid to be 200 meters in diameter, based on its absolute magnitude, and they determined a spin rate of 13.5 hours. The amplitude of the fluctuation on the light curve of 2002 VE68 could imply hat it is actually a contact binary, two clumps of asteroidal material orbiting a center of mass in contact with each other.

For more information on some of the strange and curious beasts in the asteroidal zoo, visit the NASA Near Earth Object Program website.

J-E-T-S, Jets, Jets, Jets!

Bipolar jet from a young stellar object (YSO). Credit: Gemini Observatory, artwork by Lynette Cook


It seems oddly appropriate to be writing about astrophysical jets on Thanksgiving Day, when the New York football Jets will be featured on television. In the most recent issue of Science, Carlos Carrasco-Gonzalez and collaborators write about how their observations of radio emissions from young stellar objects (YSOs) shed light one of the unsolved problems in astrophysics; what are the mechanisms that form the streams of plasma known as polar jets? Although we are still early in the game, Carrasco-Gonzalez et al have moved us closer to the goal line with their discovery.

Astronomers see polar jets in many places in the Universe. The largest polar jets are those seen in active galaxies such as quasars. They are also found in gamma-ray bursters, cataclysmic variable stars, X-ray binaries and protostars in the process of becoming main sequence stars. All these objects have several features in common: a central gravitational source, such as a black hole or white dwarf, an accretion disk, diffuse matter orbiting around the central mass, and a strong magnetic field.

Relativistic jet from an AGN. Credit: Pearson Education, Inc., Upper Saddle River, New Jersey

When matter is emitted at speeds approaching the speed of light, these jets are called relativistic jets. These are normally the jets produced by supermassive black holes in active galaxies. These jets emit energy in the form of radio waves produced by electrons as they spiral around magnetic fields, a process called synchrotron emission. Extremely distant active galactic nuclei (AGN) have been mapped out in great detail using radio interferometers like the Very Large Array in New Mexico. These emissions can be used to estimate the direction and intensity of AGNs magnetic fields, but other basic information, such as the velocity and amount of mass loss, are not well known.

On the other hand, astronomers know a great deal about the polar jets emitted by young stars through the emission lines in their spectra. The density, temperature and radial velocity of nearby stellar jets can be measured very well. The only thing missing from the recipe is the strength of the magnetic field. Ironically, this is the one thing that we can measure well in distant AGN. It seemed unlikely that stellar jets would produce synchrotron emissions since the temperatures in these jets are usually only a few thousand degrees. The exciting news from Carrasco-Gonzalez et al is that jets from young stars do emit synchrotron radiation, which allowed them to measure the strength and direction of the magnetic field in the massive Herbig-Haro object, HH 80-81, a protostar 10 times as massive and 17,000 times more luminous than our Sun.

Finally obtaining data related to the intensity and orientation of the magnetic field lines in YSO’s and their similarity to the characteristics of AGN suggests we may be that much closer to understanding the common origin of all astrophysical jets. Yet another thing to be thankful for on this day.

Symbiotic Variable Star On the Verge of an Eruption?

Symbiotic variables are binary pairs in orbit around each other inside a common envelope. Credit: NASA


November 23rd, astronomers from the Asiago Novae and Symbiotic Stars collaboration announced recent changes in the symbiotic variable star, AX Persei, could indicate the onset of a rare eruption of this system. The last major eruption took place between 1988 and1992. In the (northern hemisphere) spring of 2009, AX Per underwent a short outburst that was the first time since 1992 this star had experienced a bright phase. Now AX Per is on the rise again. This has tempted astronomers to speculate that another major eruption could be in the making. 

Symbiotic variable stars are binary systems whose members are a hot compact white dwarf in a wide orbit around a cool giant star. The orbital periods of symbiotic variables are between 100 and 2000 days. Unlike dwarf novae, compact binaries whose periods are measured in hours, where mass is transferred directly via an accretion disk around the white dwarf, siphoned directly from the surface of the secondary, in symbiotic variables the pair orbit each other far enough away that the mass exchanged between them comes from the strong stellar wind blowing off the red giant. Both stars reside within a shared cloud of gas and dust called a common envelope.

When astronomers look at the spectra of these systems they see a very complex picture. They see the spectra of a hot compact object superimposed on the spectra of a cool giant star tangled up with the spectrum of the common envelope. The term “symbiotic” was coined in 1941 to describe stars with this combined spectrum.

Typically, these systems will remain quiescent or undergo slow, irregular changes in brightness for years at a time. Only occasionally do they undergo large outbursts of several magnitudes. These outbursts are believed to be caused either by abrupt changes in the accretion flow of gas onto the primary, or by the onset of thermonuclear burning of the material piled up on the surface of the white dwarf. Whatever the cause, these major eruptions are rare and unpredictable.

The AAVSO light curve of AX Persei from 1970 to November 2010. In the middle is the eruption of 1988-1992. The precursor outburst is the sudden narrow brightening left of the larger eruption. To the right of the light curve you can see the 2009 brightening event. Is this a precursor to a coming major eruption? Credit: AAVSO

AX Per underwent a short-duration flare about one year before the onset of the major 1988-1992 outburst. Now astronomers are tempted to speculate. Could the 2009 short outburst be a similar precursor type event? The present rise in brightness by AX Per might be the onset of a major outburst event similar to that in 1988-1992. The watch begins now, and professional and amateur variable star observers will be keeping a close eye on AX Per in the coming months.

Ranging from 8.5 to 13th magnitude, AX Persei is visible to anyone with an 8-inch telescope, and if it erupts to maximum it will be visible in binoculars. You can monitor this interesting star and report your observations to the American Association of Variable Star Observers (AAVSO). Charts with comparison stars of known brightness can be plotted and printed using the AAVSO’s Variable Star Chart Plotter, VSP.

The AAVSO comparison star chart for AX Persei

Do Puny White Dwarfs Make Wimpy Supernovae?

The binary star system J0923+3028 consists of two white dwarfs: a visible star 23 percent as massive as our Sun and about four times the diameter of Earth, and an unseen companion 44 percent of the Sun's mass and about one Earth-diameter in size. The stars will spiral in toward each other and merge in about 100 million years. (Credit: Clayton Ellis (CfA))


Based on results from a radial velocity survey, Warren Brown, (Smithsonian Astrophysical Observatory) and his team have placed a few more pieces into the supernova puzzle.

Supernovae come in many flavors. There are Type Ia, the “standard candles” everyone has heard of; and there are Type Ib and Ic, which also involve binary systems. We also have Type II supernovae that are believed to be the core collapse of single, super-massive stars. There are also super-luminous supernovae, which may be the explosive conversion of a neutron star into a quark star, and finally the weak-kneed cousins of the bunch, the under-performing underluminous supernovae.

Underluminous supernovae are a rare type of supernova explosion 10–100 times less luminous than a normal SN Type Ia and eject only 20% as much matter. Brown and his team have been investigating the connection between underluminous supernovae and merging pairs of white dwarfs.

In the 1980s, on the basis of our theoretical understanding of stellar and binary evolution it was predicted that many close double white dwarfs would exist. However, it was not until 1988 that the first one was actually discovered.

The way to find close double white dwarfs is to take high resolution spectra of the H-alpha absorption line of a white dwarf at several different times and look for variation that is caused by the orbital motion of the white dwarf around an unseen (dimmer) companion. The first systematic searches were not very unsuccessful. Only one system was found. Then, during the 1990s, Tom Marsh and collaborators concentrated their search on low-mass white dwarfs, which, based on current theories, could _only_ be formed in a binary system. In this way a dozen more systems were found.

Extremely low mass (ELM) white dwarfs (WDs) with less than 0.3 solar masses are the remnants of stars that never ignited helium in their cores. The Universe is not old enough to have produce ELM WDs by single star evolution. Therefore, ELM WDs must undergo significant mass loss sometime in their evolution. Producing WDs with 0.2 solar masses most likely requires compact binary systems.

“These white dwarfs have gone through a dramatic weight loss program,” said Carlos Allende Prieto, an astronomer at the Instituto de Astrofisica de Canarias in Spain and a co-author of the study. “These stars are in such close orbits that tidal forces, like those swaying the oceans on Earth, led to huge mass losses.”

Observational data for ELM WDs is pretty hard to come by because of their rarity. For example, of the 9316 WDs identified in the Sloan Digital Sky Survey, less than 0.2% have masses below 0.3 solar.

Half of the pairs discovered by Brown and collaborators are merging and might explode as supernovae in 100 million years or more.

“We have tripled the number of known, merging white-dwarf systems,” said Smithsonian astronomer and co-author Mukremin Kilic. “Now, we can begin to understand how these systems form and what they may become in the near future.” Unlike normal white dwarfs made of carbon and oxygen, these are made almost entirely of helium.

“The rate at which our white dwarfs are merging is the same as the rate of under-luminous supernovae – about one every 2,000 years,” explained Brown. “While we can’t know for sure whether our merging white dwarfs will explode as under-luminous supernovae, the fact that the rates are the same is highly suggestive.”

At least 25% of these ELM WDs belong to the old thick disk and halo components of the Milky Way. This helps astronomers know where to look for underluminous SNe and where they are unlikely to find them, if the models are correct. If merging ELM WD systems are the progenitors of underluminous SNe, the next generation of surveys such as the Palomar Transient Factory, Pan-STARRS, Skymapper, and the Large Synoptic Survey Telescope should find them amongst the older populations of stars in both elliptical and spiral galaxies.

The papers announcing their find are available online at: and