Scientists Examine Geological Processes of Monad Regio on Neptune’s Largest Moon, Triton

Global color mosaic of Neptune's largest moon, Triton, taken by NASA's Voyager 2 in 1989. (Credit: NASA/JPL-Caltech/USGS)

In a recent study submitted to the journal Icarus, a team of researchers at the International Research School of Planetary Science (IRSPS) located at the D’Annunzio University of Chieti-Pescara in Italy conducted a geological analysis of a region on Neptune’s largest moon, Triton, known as Monad Regio to ascertain the geological processes responsible for shaping its surface during its history, and possibly today. These include what are known as endogenic and exogenic processes, which constitute geologic processes occurring internally (endo-) and externally (exo-) on a celestial body. So, what new insights into planetary geologic processes can we learn from this examination of Monad Regio?

Continue reading “Scientists Examine Geological Processes of Monad Regio on Neptune’s Largest Moon, Triton”

Will Triton finally answer, ‘Are we alone?’

NASA’s Voyager 2 took this global color mosaic of Neptune’s largest moon, Triton, in 1989. (Credit: NASA/NASA-JPL/USGS)

We recently examined how and why Saturn’s icy moon, Enceladus, could answer the longstanding question: Are we alone? With its interior ocean and geysers of water ice that shoot out tens of kilometers into space that allegedly contains the ingredients for life, this small moon could be a prime target for future astrobiology missions. But Enceladus isn’t the only location in our solar system with active geysers, as another small moon near the edge of the solar system shares similar characteristics, as well. This is Neptune’s largest moon, Triton, which has been visited only once by NASA’s Voyager 2 in 1989. But are Triton’s geysers the only characteristics that make it a good target for astrobiology and finding life beyond Earth?

Continue reading “Will Triton finally answer, ‘Are we alone?’”

China is Considering a Nuclear-Powered Mission to Neptune

Artist's impression of what the surface of Triton may look like. Credit: ESO

One look at the Planetary Decadal Survey for 2023 – 2032, and you will see some bold and cutting-edge mission proposals for the coming decade. Examples include a Uranus Orbiter and Probe (UOP) that would study Uranus’ interior, atmosphere, magnetosphere, satellites, and rings; and an Enceladus orbiter and surface lander to study the active plumes emanating from Enceladus’ southern polar region. Not to be outdone, China is also considering a nuclear-powered Neptune Explorer to explore the ice giant, its largest moon (Triton), and its other satellites and rings.

The mission was the subject of a study conducted by researchers from the China National Space Agency (CNSA), the Chinese Academy of Sciences (CAS), the China Atomic Energy Authority, the China Academy of Space Technology, and multiple universities and institutes. The paper that describes their findings (published in the journal Scientia Sinica Technologica) was led by Guobin Yu, a researcher with the School of Astronautics at Beihang University and the Department of Science and Technology and Quality at the CNSA.

Continue reading “China is Considering a Nuclear-Powered Mission to Neptune”

The Rings of Uranus and Neptune Could Help map Their Interiors

Mapping the interior of the ice giants is difficult, to say the least. Not only are they far away and therefore harder to observe, but their constant ice cover makes it extremely hard to detect what lies underneath. So scientists must devise more ingenious ways to see what’s inside them. A team from the University of Idaho, Cal Tech, Reed College, and the University of Arizona think they might have come up with a way – to look at the structure of Neptunes’ and Uranus’ rings.

Continue reading “The Rings of Uranus and Neptune Could Help map Their Interiors”

Why are Uranus and Neptune Different Colors? Haze

NASA’s Voyager 2 spacecraft captured these views of Uranus (on the left) and Neptune (on the right) during its flybys of the planets in the 1980s.

Way back in the late 1980s, the Voyager 2 spacecraft visited Uranus and Neptune. During the flybys, we got to see the first close-up views of those ice giants. Even then, planetary scientists noticed a marked color difference between the two. Yes, they both sport shades of blue. But, if you look closely at Uranus, you see a featureless pale blue planet. Neptune, on the other hand, boasts interesting clouds, dark banding, and dark spots that come and go. They’re all set against a darker blue backdrop.

So, why the difference? Planetary scientists have long suspected aerosols (droplets of gas that have liquids or dust suspended in them) in each atmosphere. But, according to a team of scientists studying the layers of the planets, the hazes those aerosols create may only be part of the story.

Continue reading “Why are Uranus and Neptune Different Colors? Haze”

Neptune’s Temperature is Behaving Strangely

One of the great things about science is that it builds on itself over time.  Data collected decades ago is still valid and helps scientists spot trends that would otherwise be lost in the flurry of new data they are trying to collect.  And sometimes, that data holds something interesting.  Such is the case when a group of scientists took a look at the infrared data of Neptune’s atmosphere and found not one but two weird changes happening.

Continue reading “Neptune’s Temperature is Behaving Strangely”

Why do Uranus and Neptune Have Magnetic Fields? Hot ice

The outer “ice giant” planets, Neptune and Uranus, have plenty of mysteries.  One of the biggest is where exactly they got their magnetic fields.  They are strong at that, with Neptune’s being twenty-seven times more powerful than Earth’s, while Uranus’ varies between ?  and four times Earth’s strength.  Chaos rules in these electromagnetic environments, making them exceptionally hard to both understand and model.  Now a team of researchers led by Dr. Vitali Prakpenka of the University of Chicago thinks they might have found the underlying cause of both the field’s strength and its randomness – “hot ice.”

Continue reading “Why do Uranus and Neptune Have Magnetic Fields? Hot ice”

Giant Balls of Mush Made From Ammonia and Water Form in the Atmospheres of Uranus and Neptune

One advantage to planetary science is that insights from one planet could explain phenomena on another.  We understand Venus’ greenhouse gas effect from our own experience on the Earth, and Jupiter and Saturn share some characteristics.  But Jupiter also provides insight into other, farther out systems, such as Uranus and Neptune.  Now, a discovery from a spacecraft orbiting Jupiter might have solved a long-standing mystery about Uranus and Neptune – where has all the ammonia gone?

Continue reading “Giant Balls of Mush Made From Ammonia and Water Form in the Atmospheres of Uranus and Neptune”

Hubble Releases a New Image of Neptune, Revealing a Rapidly Shifting Storm

This Hubble Space Telescope snapshot of the dynamic blue-green planet Neptune reveals a monstrous dark storm [top center] and the emergence of a smaller dark spot nearby [top right]. CREDITS: NASA, ESA, STScI, M.H. Wong (University of California, Berkeley) and L.A. Sromovsky and P.M. Fry (University of Wisconsin-Madison)

Storms on Neptune seem to follow a pattern of forming, strengthening and then dissipating over the course of about two Earth years. But a Neptunian storm spotted in the planet’s atmosphere over two years ago has done something quite different: it has reversed course and is still going strong.

Continue reading “Hubble Releases a New Image of Neptune, Revealing a Rapidly Shifting Storm”

Neptune & Triton – August 31, 1989.

Processed using calibrated orange, green, and blue filtered images of Neptune and Triton taken by Voyager 2 on August 31 1989. Image Credit: NASA/JPL-Caltech/Kevin M. Gill

Image-processor extraordinaire Kevin Gill has reached back in time to give us a new image of Neptune and its moon Triton.

When NASA’s Voyager 2 spacecraft flew past Neptune and Triton in August 1989, its cameras were very busy. Kevin has taken separate color-filtered images from that visit and calibrated and combined them to give us a new, almost haunting look at the planet and its largest moon.

Continue reading “Neptune & Triton – August 31, 1989.”