The Intense Heat from the Sun Helps Ice Form on Mercury. Wait… What?

While the scorching planet Mercury might not be the first place you’d think to look for ice, the MESSENGER mission confirmed in 2012 that the planet closest to the Sun does indeed hold water ice in the permanently-shadowed craters around its poles.  But now a new study regarding Mercury’s ice provides even more counter-intuitive details about how this ice is formed. Scientists say heat likely helps create some of the ice.

Continue reading “The Intense Heat from the Sun Helps Ice Form on Mercury. Wait… What?”

Satellites Watched Mercury’s Transit From Space, Confirming That Yes, the Sun Has At Least One Planet

Do you wonder how astronomers find all those exoplanets orbiting stars in distant solar systems?

Mostly they use the transit method. When a planet travels in between its star and an observer, the light from the star dims. That’s called a transit. If astronomers watch a planet transit its star a few times, they can confirm its orbital period. They can also start to understand other things about the planet, like its mass and density.

The planet Mercury just transited the Sun, giving us all an up close look at transits.

Continue reading “Satellites Watched Mercury’s Transit From Space, Confirming That Yes, the Sun Has At Least One Planet”

Mercury has Magnetic Poles that Drift Like Earth’s

Earth’s magnetic poles drift over time. This is something that every airplane pilot or navigator knows. They have to account for it when they plan their flights.

They drift so much, in fact, that the magnetic poles are in different locations than the geographic poles, or the axis of Earth’s rotation. Today, Earth’s magnetic north pole is 965 kilometres (600 mi) away from its geographic pole. Now a new study says the same pole drifting is occurring on Mercury too.

Continue reading “Mercury has Magnetic Poles that Drift Like Earth’s”

There May be Thick Ice Deposits on the Moon and Mercury

In addition to being the only solvent that is capable of supporting life, water is essential to life as we know it here on Earth. Because of this, finding deposits of water – whether in liquid form or as ice – on other planets is always exciting. Even where is not seen as a potential indication of life, the presence of water offers opportunities for exploration, scientific study, and even the creation of human outposts.

This has certainly been the case as far as the Moon and Mercury are concerned, where water ice was discovered in the permanently-shadowed cratered regions around the poles. But according to a new analysis of the data from the Lunar Reconnaissance Orbiter and the MESSENGER spacecraft, the Moon and Mercury may have significantly more water ice than previously thought.

Continue reading “There May be Thick Ice Deposits on the Moon and Mercury”

Mercury-Bound BepiColombo is About to Start Using the Most Powerful Ion Engines Ever Sent to Space

An artist's impression of the BepiColombo spacecraft as it approaches Mercury at the end of its 7 year journey. Image: spacecraft: ESA/ATG medialab; Mercury: NASA/JPL

A handful of spacecraft have used ion engines to reach their destinations, but none have been as powerful as the engines on the BepiColombo spacecraft. BepiColombo is a joint mission between the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA.) It was launched on October 20, 2018, and has gone through weeks of in-flight commissioning. On Sunday it turned on its powerful ion thrusters for the first time.

“We put our trust in the thrusters and they have not let us down.” – Günther Hasinger, ESA Director of Science.

BepiColombo is a three-part spacecraft. It has two orbiters, the Mercury Planet Orbiter (MPO) built by the ESA, and the Mercury Magnetospheric Orbiter (MMO) built by JAXA. The third part is the Mercury Transfer Module (MTM), built by ESA. The MTM is the propulsion part of the spacecraft and contains the spacecraft’s four ion engines.

Continue reading “Mercury-Bound BepiColombo is About to Start Using the Most Powerful Ion Engines Ever Sent to Space”

Forming Dense Metal Planets like Mercury is Probably Pretty Difficult and Rare in the Universe

The planet Mercury, the closet planet to our Sun, is something of an exercise in extremes. Its days last longer than its years and at any given time, its sun-facing side is scorching hot while its dark side is freezing cold. It is also one of the least understood planets in our Solar System. While it is a terrestrial (i.e. rocky) planet like Earth, Venus and Mars, it has a significantly higher iron-to-rock ratio than the others.
Continue reading “Forming Dense Metal Planets like Mercury is Probably Pretty Difficult and Rare in the Universe”

Planetpalooza: All Bright Planets Visible in the July Dusk Sky

Moon and Venus

Moon and Venus
Venus and the waxing crescent Moon above the Grand Palais in Paris, France from May 17th. Image credit: Gwenael Blanck

Missed the planets in the dusk sky in early 2018? This summer’s astronomical blockbuster sees the return of all the classical naked eye planets in the dusk sky, in a big way.

The Sky Scene in July

This coming July 2018 features a rare look at the solar system in profile: you can see Mercury and Venus low in the dusk looking westward immediately after sunset, with Jupiter high to the south, Saturn rising in the east, and Mars rising just behind. This isn’t a true grouping or grand conjunction, as the planets span a 170 degree swath of the ecliptic from Mercury to Mars (too bad they’re not in orbital order!) but a product of our Earthly vantage point looking out over the swath of inner solar system in the evening sky.

Can you manage a “planetary marathon” and collect all five this coming Fourth of July weekend? Here’s a quick rundown of all the planetary action from west to east:

Mercury
An amazing view – Mercury through the telescope from May 5th. Image credit and copyright: Roger Hutchinson.

Mercury’s July apparition – fleeting Mercury is always the toughest of the planets to catch, low to the west. -0.3 magnitude Mercury actually forms a straight line with the bright +1st/2nd magnitude stars Castor and Pollux in Gemini the Twins later this week on the evening of June 27th. Mercury reaches greatest elongation 26 degrees east of the Sun on July 12th, presenting a half illuminated, 8” disk. The angle of the evening ecliptic is canted southward in July, meaning that the position of the planets in the evening sky also favors southern viewers. July also presents another interesting mercurial challenge, as Mercury passes in front of the Beehive Open cluster (Messier 44) in the heart of the constellation Cancer on the night of July 3rd/4th.

planets
The span of the planets through late-July at dusk. Credit: Stellarium.

Venus this summer – higher up at dusk, brilliant Venus rules the evening sky, shining at magnitude -4. Venus is so bright that you can easily pick it up this month before sunset… if you know exactly where to look for it. Venus reaches greatest elongation 46 degrees east of the Sun on August 17th, presenting a featureless half-illuminated disk 25” in diameter near a point known as dichotomy. Venus also flirts with the bright star Regulus (Alpha Leonis) in July, passing a degrees from the star on July 10th. Fun fact: Venus can actually occult (pass in front of) Regulus and last did so on July 7th, 1959 and will do so next on October 1st, 2044.

Jupiter
Jupiter, with the shadow of Europa in transit from June 6th. Image credit and copyright: Ralph Smyth.

Jupiter Rules – The King of the Planets, Jupiter rules the sky after darkness falls, crossing the astronomical constellation Libra the Scales. Fresh off of its May 9th opposition, Jupiter still shines at a respectable magnitude -2 in July, with a disk 36” across. Jupiter heads towards quadrature 90 degrees east of the Sun on August 6th, meaning the planet and its retinue of four Galilean moons cast their respective shadows off to one side. In fact, we also see a series of fine double shadow transits across the Jovian cloud tops involving Io and Europa starting on July 29th.

saturn
The glorious planet Saturn. Image credit and copyright: Paul Stewart

…and Saturn makes five: Stately Saturn never fails to impress. Also just past its June 27th opposition, the rings are still tipped open narrowing down only slightly from last year’s widest angle of 27 degrees, assuring an amazing view. Shining at magnitude 0 and subtending 42” (including rings) in July, Saturn traverses the star-rich fields of the astronomical constellation Sagittarius the Archer this summer. Look at Saturn, and you’re glimpsing the edge of the known solar system right up until William Herschel discovered Uranus on the night of March 13th, 1781.

The origins of a dust storm: Mars from late May. Image credit and copyright: Efrain Morales.

Enter Mars: We saved the best for last. The Red Planet races towards a fine opposition on July 27th. This is the best approach of Mars since the historic 2003 opposition, and very nearly as favorable: Mars shines at magnitude -2.8 at the end of July, and presents a 24.3” disk. More to come as Mars approaches!

And as with many an opposition, dust storm season has engulfed Mars. Be vigilant, as the ‘Red’ Planet often takes on a sickly yellowish tint during a large dust storm, and this cast will often be apparent even to the naked eye. NASA’s aging Opportunity rover has fallen silent due to the lack of sunlight and solar power, and it’s to be seen if the rover can ride out the storm.

The path of the Moon – The Moon makes a good guidepost as it visits the planets in July. The first eclipse season of 2018 also begins in July, with a partial solar eclipse for Tasmania, SE Australia and the extreme southernmost tip of New Zealand on July 13th and wrapping up with a fine total lunar eclipse favoring Africa, Europe, Asia and Australia on July 27th. Note that this eclipse is only 14 hours after Mars passes opposition… we expect to see plenty of pictures of a ruddy Mars near a Blood Moon eclipse.

The Moon also makes a handy guide to catch each of the planets in the daytime sky… though you’ll need binoculars or a telescope to nab Mercury or Saturn (also, be sure the Sun is physically blocked out of view while hunting for Mercury in the daytime sky!) Here are the respective passes of the Moon near each planet in July:

Planet Date Time Moon Phase/illumination Distance
Mercury July 14th 23UT/7PM EDT Waxing crescent/5% 2.1 degrees
Venus July 16th 4UT/00AM EDT Waxing crescent/14% 1.5 degrees
Jupiter July 21st 2UT/10PM EDT Waxing gibbous/63% 4.2 degrees
Saturn July 25th 5UT/1AM EDT Waxing gibbous/94% 2 degrees
Mars July 27th 16UT/12 EDT Full Moon/100% 8 degrees

Unfortunately, the telescopic planets Uranus and Neptune are left out of the July evening view; Uranus is currently crossing the constellation Aries and Neptune resides in Aquarius, respectively. Pluto is, however, currently in the direction of Sagittarius, and you can also wave to NASA’s New Horizons spacecraft en route to its New Year’s Day 2019 KBO destination Ultima Thule (nee 2014 MU69) near the waxing gibbous Moon on the night of July 26th.

The Moon, Pluto and New Horizons on the evening of July 26th. Credit: Starry Night

And finally, another solar system destination in Ophiuchus the Serpent Bearer beckons telescope owners in July: asteroid 4 Vesta.

All of this is more than enough planetary action to keep planetary observers and imagers up late on forthcoming July evenings.

More Surface Ice on Mercury than Previously Thought, says New Study

Back in 2012, scientists were delighted to discover that within the polar regions of Mercury, vast amounts of water ice were detected. While the existence of water ice in this permanently-shaded region had been the subject of speculation for about 20 years, it was only after the Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) spacecraft studied the polar region that this was confirmed.

Based on the MESSENGER data, it was estimated that Mercury could have between 100 billion to 1 trillion tons of water ice at both poles, and that the ice could be up to 20 meters (65.5 ft) deep in places. However, a new study by a team of researchers from Brown University indicates that there could be three additional large craters and many more smaller ones in the northern polar region that also contain ice.

The study, titled “New Evidence for Surface Water Ice in Small-Scale Cold Traps and in Three Large Craters at the North Polar Region of Mercury from the Mercury Laser Altimeter“, was recently published in the Geophysical Research Letters. Led by Ariel Deutsch, a NASA ASTAR Fellow and a PhD candidate at Brown University, the team considered how small-scale deposits could dramatically increase the overall amount of ice on Mercury.

Artist’s concept of the MESSENGER spacecraft on approach to Mercury. Credit: NASA/JPL

Despite being the closest planet to the Sun, and experiencing scorching surface temperatures on its Sun-facing side, Mercury’s low axial tilt means that its polar regions are permanently shaded and experience average temperatures of about 200 K (-73 °C; -100 °F). The idea that ice might exist in these regions dates back to the 1990s, when Earth-based radar telescopes detected highly reflective spots within the polar craters.

This was confirmed when the MESSENGER spacecraft detected neutron signals from the planet’s north pole that were consistent with water ice. Since that time, it has been the general consensus that Mercury’s surface ice was confined to seven large craters. But as Ariel Deutsch explained in a Brown University press statement, she and her team sought to look beyond them:

“The assumption has been that surface ice on Mercury exists predominantly in large craters, but we show evidence for these smaller-scale deposits as well. Adding these small-scale deposits to the large deposits within craters adds significantly to the surface ice inventory on Mercury.”

For the sake of this new study, Deutsch was joined by Gregory A. Neumann, a research scientist from NASA’s Goddard Space Flight Center, and James W. Head. In addition to being a professor the Department of Earth, Environmental and Planetary Sciences at Brown, Head was also a co-investigator for the MESSENGER and the Lunar Reconnaissance Orbiter missions.

A view of the crater Prokofiev on Mercury. The crater is the largest one on the planet’s north pole area to have “radar-bright” material, a probable sign of ice. Credit: NASA/JHUAPL/CIW

Together, they examined data from MESSENGER’s Mercury Laser Altimeter (MLA) instrument. This instrument was used by MESSENGER to measure the distance between the spacecraft and Mercury, the resulting data being then used to create detailed topographical maps of the planet’s surface. But in this case, the MLA was used to measure surface reflectance, which indicated the presence of ice.

As an instrument specialist with the MESSENGER mission, Neumann was responsible for calibrating the altimeter’s reflectance signal. These signals can vary based on whether the measurements are taken from overhead or at an angle (the latter of which is refereed to as “off-nadir” readings). Thanks to Neumann’s adjustments, researchers were able to detect high-reflectance deposits in three more large craters that were consistent with water ice.

According to their estimates, these three craters could contain ice sheets that measure about 3,400 square kilometers (1313 mi²). In addition, the team also looked at the terrain surrounding these three large craters. While these areas were not as reflective as the ice sheets inside the craters, they were brighter than the Mercury’s average surface reflectance.

Beyond this, they also looked at altimeter data to seek out evidence of smaller scale deposits. What they found was four smaller craters, each with diameters of less than 5 km (3 mi), which were also more reflective than the surface. From this, they deduced that there were not only more large deposits of ice that were previously undiscovered, but likely many smaller “cold traps” where ice could exist as well.

A forced perspective view of Mercury’s cratered north pole, showing the presence of water ice in yellow. Credit: NASA/JHUAPL/CIW

Between these three newly-discovered large deposits, and what could be hundreds of smaller deposits, the total volume of ice on Mercury could be considerably more than we previously thought. As Deutsch said:

“We suggest that this enhanced reflectance signature is driven by small-scale patches of ice that are spread throughout this terrain. Most of these patches are too small to resolve individually with the altimeter instrument, but collectively they contribute to the overall enhanced reflectance… These four were just the ones we could resolve with the MESSENGER instruments. We think there are probably many, many more of these, ranging in sizes from a kilometer down to a few centimeters.”

In the past, studies of the lunar surface also confirmed the presence of water ice in its cratered polar regions. Further research indicated that outside of the larger craters, small “cold traps”could also contain ice. According to some models, accounting for these smaller deposits could effectively double estimates on the total amounts of ice on the Moon. Much the same could be true for Mercury.

But as Jim Head (who also served as Deutsch Ph.D. advisor for this study) indicated, this work also adds a new take to the critical question of where water in the Solar System came from. “One of the major things we want to understand is how water and other volatiles are distributed through the inner Solar System—including Earth, the Moon and our planetary neighbors,” he said. “This study opens our eyes to new places to look for evidence of water, and suggests there’s a whole lot more of it on Mercury than we thought.”

This shaded relief image shows the Moon’s Shackleton Crater, a 21-km-wide crater permanently shadowed crater near the lunar south pole. The crater’s interior structure is shown in false color based on data from NASA’s LRO probe. Credit: NASA

In addition to indicating the Solar System may be more watery than previously suspected, the presence of abundant ice on Mercury and the Moon has bolstered proposals for building outposts on these bodies. These outposts could be capable of turning local deposits water ice into hydrazine fuel, which would drastically reduce the costs of mounting long-range missions throughout the Solar System.

On the less-speculative side of things, this study also offers new insights into how the Solar System formed and evolved. If water is far more plentiful today than we knew, it would indicate that more was present during the early epochs of planetary formation, presumably when it was being distributed throughout the Solar System by asteroids and comets.

Further Reading: Brown University, Geophysical Research Letters

What is the Smallest Planet in the Solar System?

The Solar Planets are a nice mixed bag of what is possible when it comes to planetary formation. Within the inner Solar System, you have the terrestrial planets – bodies that are composed primarily of silicate minerals and metals. And in the outer Solar System, you have the gas giants and bodies that are composed primarily of ice that lie just beyond in the Trans-Neptunian region.

Of these, the question of which planet is the smallest has been the subject of some controversy. Until recently, the smallest planet was considered to be Pluto. But with the 2006 IAU Resolution that put constraints on what the definition of a planet entails, that status has since passed to Mercury. So in addition to being the closest planet to the Sun, Mercury is also the smallest.

Size and Mass:

With a mean radius of 2440 km, Mercury is the smallest planet in our Solar System, equivalent in size to 0.38 Earths. And given that it has its experiences no flattening at the poles – like Venus, which means it is an almost perfectly spherical body – its radius is the same at the poles as it is the equator.

And while it is smaller than the largest natural satellites in our Solar System – such as Ganymede and Titan – it is more massive. At 3.3011×1023 kg in mass (33 trillion trillion metric tons; 36.3 trillion trillion US tons), it is equivalent to 0.055 Earths in terms of mass.

Mercury and Earth, size comparison. Credit: NASA / APL (from MESSENGER)

Density, Volume:

On top of that, Mercury is significantly more dense than bodies its size. In fact, Mercury’s density (at 5.427 g/cm3) is the second highest in the Solar System, only slightly less than Earth’s (5.515 g/cm3). The result of this is a gravitational force of 3.7 m/s2, which is 0.38 times that of Earth (0.38 g). In essence, this means that if you could stand on the surface of Mercury, you would weight 38% as much as you do on Earth.

In terms of volume, Mercury once again becomes a bit diminutive, at least by Earth standards. Basically, Mercury has a volume of 6.083×1010 km³ (60 billion cubic km; 14.39 trillion cubic miles) which works out to 0.056 times the volume of the Earth. In other words, you could fit Mercury inside Earth almost twenty times over.

Structure and Composition:

Like Earth, Venus and Mars, Mercury is a terrestrial planet, meaning that is primarily composed of silicate minerals and metals that are differentiated between a metallic core and a silicate mantle and crust. But in Mercury’s case, the core is oversized compared to the other terrestrial planets, measuring some 1,800 km (approx. 1,118.5 mi) in radius, and therefore occupying 42% of the planet’s volume (compared to Earth’s 17%).

Internal structure of Mercury: 1. Crust: 100–300 km thick 2. Mantle: 600 km thick 3. Core: 1,800 km radius. Credit: MASA/JPL

Another interesting feature about Mercury’s core is the fact that it has a higher iron content than that of any other major planet in the Solar System. Several theories have been proposed to explain this, the most widely-accepted being that Mercury was once a larger planet that was struck by a planetesimal that stripped away much of the original crust and mantle, leaving behind the core as a major component.

Beyond the core is a mantle that measures 500 – 700 km (310 – 435 mi) in thickness and is composed primarily of silicate material. The outermost layer is Mercury’s crust, which is composed of silicate material that is believed to be 100 – 300 km thick.

Yes, Mercury is a pretty small customer when compared to its brothers, sisters and distant cousins in the Solar System. However, it is also one of the densest, hottest and most irradiated. So while small, no one would ever accuse this planet of not being really tough!

We have written many interesting articles on Mercury and the Solar Planets here at Universe Today. Here’s What is the Biggest Planet in the Solar System?, What is the Second Largest Planet in the Solar System?, How Does Mercury Compare to Earth?, What is the Average Surface Temperature on Mercury?, How Long is a Day on Mercury?, and The Orbit of Mercury, How Long is a Year on Mercury?,

And here’s another take on the smallest planet in the Solar System, and here’s a link to NASA’s Solar System Exploration Guide.

We have recorded a whole series of podcasts about the Solar System at Astronomy Cast.

Sources:

See Mercury At Dusk, New Comet Lovejoy At Dawn

Mercury requests the company of your gaze now through the beginning of April, when it shines near Mars low in the west after sunset. Created with Stellarium

March has been a busy month for planet and comet watchers. Lots of action. Venus, the planet that’s captured our attention at dusk in the west for months, is in inferior conjunction with the Sun today. Watch for it to rise before the Sun in the eastern sky at dawn in about a week.

Mercury like Venus and the Moon shows phases when viewed through a telescope. Right now, the planet is in waning gibbous phase. Stellarium

As Venus flees the evening scene, steadfast Mars and a new planet, Mercury keep things lively. For northern hemisphere skywatchers, this is Mercury’s best dusk apparition of the year. If you’d like to make its acquaintance, this week and next are best. And it’s so easy! Just find a spot with a wide open view of the western horizon, bring a pair of binoculars for backup and wait for a clear evening.

Plan to watch starting about 40 minutes after sundown. From most locations, Mercury will appear about 10° or one fist held at arm’s length above the horizon a little bit north of due west. Shining around magnitude +0, it will be the only “star” in that part of the sky. Mars is nearby but much fainter at magnitude +1.5. You’ll have to wait at least an hour after sunset to spot it.

Have a telescope? Check out the planet using a magnification around 50x or higher. You’ll see that it looks like a Mini-Me version of the Moon. Mercury is brightest when closest to full. Over the next few weeks, it will wane to a crescent while increasing in apparent size.

If you have any difficulty finding brilliant Jupiter and its current pal, Spica, just start with the Big Dipper, now high in the northeastern sky at nightfall. Use the Dipper’s handle to “arc to Arcturus” and then “jump to Jupiter.” Credit: Bob King

If you like planets, don’t forget the combo of Jupiter and Spica at the opposite end of the sky. Jupiter climbs out of bed and over the southeastern horizon about 9 p.m. local time in late March, but to see it and Spica, Virgo’s brightest star, give it an hour and look again at 10 p.m. or later. Quite the duo!

You’re not afraid of getting up with the first robins are you? If you set your alarm to a half hour or so before the first hint of dawn’s light and find a location with an open view of the southeastern horizon, you might be first in your neighborhood to spot Terry Lovejoy’s brand new comet. His sixth, the Australian amateur discovered C/2017 E4 Lovejoy on the morning of March 10th in the constellation Sagittarius at about 12th magnitude.

C/2017 E4 Lovejoy glows blue-green this morning March 26. Structure around the nucleus including a small jet is visible. The comet is currently in Aquarius and quickly moving north and will reach perihelion on April 23. Credit: Terry Lovejoy

The comet has rapidly brightened since then and is now a small, moderately condensed fuzzball of magnitude +9, bright enough to spot in a 6-inch or larger telescope. Some observers have even picked it up in large binoculars. Lovejoy’s comet should brighten by at least another magnitude in the coming weeks, putting it within 10 x 50 binocular range.

This map shows the sky tomorrow morning before dawn from the central U.S. (latitude about 41° north). Created with Stellarium

Good news. E4 Lovejoy is moving north rapidly and is now visible about a dozen degrees high in Aquarius just before the start of dawn. I’ll be out the next clear morning, eyepiece to eye, to welcome this new fuzzball from beyond Neptune to my front yard. The map above shows the eastern sky near dawn and a general location of the comet. Use the more detailed map below to pinpoint it in your binoculars and telescope.

This chart shows the comet’s position nightly (5:30 a.m. CDT) through April 9. On the morning of April 1 it passes just a few degrees below the bright globular cluster M15. Click to enlarge, save and then print out for use at the telescope. Map: Bob King, Source: Chris Marriott’s SkyMap

Spring brings with it a new spirit and the opportunity to get out at night free of the bite of mosquitos or cold. Clear skies!