JWST Sees the Most Distant Active Supermassive Black Hole

A zoomed-in view of images captured by the James Webb Space Telescope in near-infrared light for the Cosmic Evolution Early Release Science (CEERS) Survey. A galaxy assembling itself JWST found in this view has the most distant supermassive black hole seen to date.Credit: NASA, ESA, CSA, Steve Finkelstein (UT Austin), Micaela Bagley (UT Austin), Rebecca Larson (UT Austin).
A zoomed-in view of images captured by the James Webb Space Telescope in near-infrared light for the Cosmic Evolution Early Release Science (CEERS) Survey. A galaxy assembling itself JWST found in this view has the most distant supermassive black hole seen to date. Credit: NASA, ESA, CSA, Steve Finkelstein (UT Austin), Micaela Bagley (UT Austin), Rebecca Larson (UT Austin).

As astronomers push our views of the Universe further back in time, their telescopes keep uncovering surprises. That’s the case with a supermassive black hole in CEERS 1019, a distant very early galaxy.

Continue reading “JWST Sees the Most Distant Active Supermassive Black Hole”

JWST Shows How the Early Universe Was Furiously Forming Stars

This infrared image from NASA’s James Webb Space Telescope (JWST) was taken for the JWST Advanced Deep Extragalactic Survey, or JADES, program. It shows a portion of an area of the sky known as GOODS-South, which has been well studied by the Hubble Space Telescope and other observatories. More than 45,000 galaxies are visible here. Credits: NASA, ESA, CSA, Brant Robertson (UC Santa Cruz), Ben Johnson (CfA), Sandro Tacchella (Cambridge), Marcia Rieke (University of Arizona), Daniel Eisenstein (CfA). Image processing: Alyssa Pagan (STScI)

We can gaze out into regions in our neighbourhood of the Milky Way and find orgies of star birth. The closest region is in the Orion nebula, where astronomers have identified more than 700 young stars. They range from only 100,000 years—mere infancy for a star—to over a million years.

But we’re more than 13 billion years after the Big Bang now. What was star formation like way back when, when conditions in the Universe were so different?

Continue reading “JWST Shows How the Early Universe Was Furiously Forming Stars”

JWST Looks at the Atmosphere of a Stormy, Steamy Mini-Neptune

This artist’s concept depicts the planet GJ 1214 b, a “mini-Neptune” with what is likely a steamy, hazy atmosphere. A new study based on observations by NASA’s Webb telescope provides insight into this type of planet, the most common in the galaxy. Credit: NASA/JPL-Caltech/R. Hurt (IPAC)

Just because there’s no Mini-Neptune in our Solar System doesn’t mean they’re not common. They appear to be widespread throughout the Milky Way, and according to NASA, are the most common exoplanet type. GJ 1214 b is one of them.

Continue reading “JWST Looks at the Atmosphere of a Stormy, Steamy Mini-Neptune”

JWST Sees Merging Galaxies Releasing the Light of a Trillion Suns

ARP 220 is a pair of merging galaxies about 250 million light years away. Image Credit: NASA, ESA, CSA, STScI, Alyssa Pagan (STScI)

If we want to know what it’ll look like in about 4.5 billion years when our galaxy merges with Andromeda, we might take a look at ARP 220. ARP 220 is a pair of galaxies that are in the process of merging. The merging galaxies emit brilliant infrared light, and the James Webb Space Telescope captured that light in a vivid portrait.

Continue reading “JWST Sees Merging Galaxies Releasing the Light of a Trillion Suns”

Beautiful New Hubble Photo Shows Hot, Young Variable Stars in the Orion Nebula

The bright variable star V 372 Orionis takes centre stage in this image from the Hubble Space Telescope. Credit: ESA/Hubble & NASA, J. Bally, M. Robberto.

Here’s another striking image from the venerable Hubble Space Telescope. These billows of blue and red show a detailed look at a small portion of the famous Orion Nebula. But what really catches the eye are the brilliant stars with the cross-shaped diffraction spikes — a hallmark of Hubble images.

Continue reading “Beautiful New Hubble Photo Shows Hot, Young Variable Stars in the Orion Nebula”

Astronomers Pin Down the Age of the Most Distant Galaxy: Seen 367 Million Years After the Big Bang

The radio telescope array ALMA has pin-pointed the exact cosmic age of a distant JWST-identified galaxy, GHZ2/GLASS-z12, at 367 million years after the Big Bang. Image Credit: NASA / ESA / CSA / T. Treu, UCLA / NAOJ / T. Bakx, Nagoya U. Licence type Attribution (CC BY 4.0)

Staring off into the ancient past with a $10 billion space telescope, hoping to find extraordinarily faint signals from the earliest galaxies, might seem like a forlorn task. But it’s only forlorn if we don’t find any. Now that the James Webb Space Telescope has found those signals, the exercise has moved from forlorn to hopeful.

But only if astronomers can confirm the signals.

Continue reading “Astronomers Pin Down the Age of the Most Distant Galaxy: Seen 367 Million Years After the Big Bang”

JWST Sees Frozen Water, Ammonia, Methane and Other Ices in a Protostellar Nebula

A large, dark cloud is contained within the frame. In its top half it is textured like smoke and has wispy gaps, while at the bottom and at the sides it fades gradually out of view. On the left are several orange stars: three each with six large spikes, and one behind the cloud which colours it pale blue and orange. Many tiny stars are visible, and the background is black.
This image by the James Webb Space Telescope’s Near-InfraRed Camera (NIRCam) features the central region of the Chameleon I dark molecular cloud, which resides 630 light years away. Credit: NASA, ESA, CSA, and M. Zamani (ESA/Webb); Science: M. K. McClure (Leiden Observatory), F. Sun (Steward Observatory), Z. Smith (Open University), and the Ice Age ERS Team.

Want to build a habitable planet? Then you’ll need various and sundry ingredients such as carbon, hydrogen oxygen, nitrogen and sulfur. The James Webb Space Telescope has found the building blocks for these key ingredients in the colds depths of a distant protostellar nebula called the Chameleon I molecular cloud. Scientists say the discovery of these proto-ingredients allows astronomers to examine the simple icy molecules that one day will be incorporated into future exoplanets.

Continue reading “JWST Sees Frozen Water, Ammonia, Methane and Other Ices in a Protostellar Nebula”

For the First Time, Astronomers Spot Stars in Galaxies that Existed Just 1 Billion Years After the Big Bang

Artist impression of a powerful young quasar. Credit: ESO/M. Kornmesser Credit: ESO/M. Kornmesser

Since it launched on December 25th, 2021 (quite the Christmas present!), the James Webb Space Telescope (JWST) has taken the sharpest and most detailed images of the Universe, surpassing even its predecessor, the venerable Hubble Space Telescope! But what is especially exciting are the kinds of observations we can look forward to, where the JWST will use its advanced capabilities to address some of the most pressing cosmological mysteries. For instance, there’s the problem presented by high-redshift supermassive black holes (SMBHs) or brightly-shining quasars that existed during the first billion years of the Universe.

To date, astronomers have not been able to determine how SMBHs could have formed so soon after the Big Bang. Part of the problem has been that, until recently, stars in host galaxies with redshift values of Z>2 (within 10.324 billion light-years) have been elusive. But thanks to the JWST, an international team of astronomers recently observed stars in quasars at Z>6 (within 12.716 billion light-years) for the first time. Their observations could finally allow astronomers to assess the processes in early quasars that governed the formation and evolution of the first SMBHs.

Continue reading “For the First Time, Astronomers Spot Stars in Galaxies that Existed Just 1 Billion Years After the Big Bang”

The Webb Image you’ve Been Waiting For: the Orion Nebula

Orion Nebula by JWST
The inner region of the Orion Nebula as seen by the James Webb Space Telescope’s NIRCam instrument. Credit: NASA, ESA, CSA, PDRs4All ERS Team; image processing Salomé Fuenmayor

This is it, folks. Feast your eyes! It’s what we’ve been training for—seeing the James Webb Space Telescope’s first detailed view of the Orion Nebula! JWST’s NIRCam gazed at this starbirth nursery and revealed incredible details hidden from view by gas and dust clouds.

Continue reading “The Webb Image you’ve Been Waiting For: the Orion Nebula”

Astronomers List 88 Distant Galaxies They Want to Look at With JWST. Some Are Less Than 200 Million Years Old.

SMACS cluster from JWST shows evidence of dark matter
The galaxy cluster SMACS 0723 as seen by NIRCam on JWST. It's gravitational lensing properties (from its mass and from the mass of dark matter) are helping astronomers identify 88 distant galaxies in this field of view for further study. Courtesy NASA, ESA, CSA, STScI

Way back in the earliest ages of the universe, the first galaxies were born. Astronomers want to know more about them. They’re especially interested to know exactly when these distant galaxies formed and what their stars were like. Now that JWST is a working observatory, astronomers are excited to use its data to explore those early epochs. They’re eager to see the most distant objects, and—as seems likely—do a rejiggering of the cosmic timeline after the Big Bang.

Continue reading “Astronomers List 88 Distant Galaxies They Want to Look at With JWST. Some Are Less Than 200 Million Years Old.”