JWST Finds the Smallest Free-Floating Brown Dwarf

Star cluster IC 348 seen by the MIRI instrument of JWST. Image credit: NASA, ESA, CSA, STScI, Kevin Luhman (PSU), Catarina Alves de Oliveira (ESA). Brown dwarf image credit: NASA
Star cluster IC 348 seen by the MIRI instrument of JWST. Image credit: NASA, ESA, CSA, STScI, Kevin Luhman (PSU), Catarina Alves de Oliveira (ESA). Brown dwarf image credit: NASA

Star formation is happening all around us in the Universe. However, there is still plenty we don’t know about it, including, as a recent press release points out, something that every astronomy textbook points out – we don’t know the size of the smallest star. Most current answers in those textbooks refer to an object known as a brown dwarf, a cross between a star and a giant planet. Recently, the James Webb Space Telescope (JWST) found what is believed to be the smallest brown dwarf ever discovered – and it weighs in at only 3-4 times the weight of Jupiter.

Continue reading “JWST Finds the Smallest Free-Floating Brown Dwarf”

A Galaxy Only 350 Million Years Old Had Surprising Amounts of Metal

The JWST has the power to see the most ancient galaxies in the Universe, as shown in this image of its first deep field. Now, astrophysicists have found carbon in one of these ancient galaxies. Image Credit: NASA, ESA, CSA, and STScI

Astrophysicists working with the JWST have found a surprising amount of metal in a galaxy only 350 million years after the Big Bang. How does that fit in with our understanding of the Universe?

Continue reading “A Galaxy Only 350 Million Years Old Had Surprising Amounts of Metal”

Astronomers Want JWST to Study the Milky Way Core for Hundreds of Hours

This overview of the Milky Way's Galactic Center (GC) shows the region of the proposed JWST survey. Image Credit: NASA/JPL-Caltech/S. Stolovy (Spitzer Science Center/Caltech)

To understand the Universe, we need to understand the extreme processes that shape it and drive its evolution. Things like supermassive black holes (SMBHs,) supernovae, massive reservoirs of dense gas, and crowds of stars both on and off the main sequence. Fortunately there’s a place where these objects dwell in close proximity to one another: the Milky Way’s Galactic Center (GC.)

Continue reading “Astronomers Want JWST to Study the Milky Way Core for Hundreds of Hours”

Feast Your Eyes on this Star-Forming Region, Thanks to the JWST

The JWST cast its infrared gaze at NGC 346, a young open cluster in the Small Magellanic Cloud. It's the largest and brightest star forming region in the SMC. Image Credit: ESA/CSA/NASA N. Habel (JPL), P. Kavanagh (Maynooth University)

Nature is stingy with its secrets. That’s why humans developed the scientific method. Without it, we’d still be ignorant and living in a world dominated by superstitions.

Astrophysicists have made great progress in understanding how stars form, thanks to the scientific method. But there’s a lot they still don’t know. That’s one of the reasons NASA built the James Webb Space Telescope: to coerce Nature into surrendering its deeply-held secrets.

Continue reading “Feast Your Eyes on this Star-Forming Region, Thanks to the JWST”

The JWST Just Found Carbon on Europa, Boosting the Moon’s Potential Habitability

This reprocessed colour view of Jupiter’s moon Europa was made from images taken by NASA's Galileo spacecraft in the late 1990s. Credit: NASA/JPL-Caltech

Most planets and moons in the Solar System are clearly dead and totally unsuitable for life. Earth is the only exception. But there are a few worlds where there are intriguing possibilities of life.

Chief among them is Jupiter’s moon Europa, and the JWST just discovered carbon there. That makes the moon and its subsurface ocean an even more desirable target in the search for life.

Continue reading “The JWST Just Found Carbon on Europa, Boosting the Moon’s Potential Habitability”

It’s Like Looking at the Infant Sun: Webb Captures Image of an Energetic Young Star

NASA’s James Webb Space Telescope’s high resolution, near-infrared look at Herbig-Haro 211 reveals exquisite detail of the outflow of a newly forming young star, an infantile analogue of our Sun. Image Credit: ESA/Webb, NASA, CSA, Tom Ray (Dublin)
NASA’s James Webb Space Telescope’s high resolution, near-infrared look at Herbig-Haro 211 reveals exquisite detail of the outflow of a newly forming young star, an infantile analogue of our Sun. Image Credit: ESA/Webb, NASA, CSA, Tom Ray (Dublin)

Ever wondered what our young Sun might have looked like in its infancy some five billion years ago?

The audacious JWST has captured an image of a very young star much like our young Sun, though the star itself is obscured. Instead, we see supersonic jets of gas. Young stars can blast out jets of material as they form, and the jets light up the surrounding gas. The luminous regions created by the jets as they slam into the gas are called Herbig-Haro Objects.

Continue reading “It’s Like Looking at the Infant Sun: Webb Captures Image of an Energetic Young Star”

JWST Turns its Gaze on the Farthest Known Star: Earendel

The massive galaxy cluster called WHL0137-08, which is gravitational lensing the most strongly magnified galaxy known in the Universe’s first billion years: the Sunrise Arc, and within that galaxy, the most distant star ever detected. The star is , nicknamed Earendel. NASA, ESA, CSA, D. Coe (AURA/STScI for ESA), Z. Levay
The massive galaxy cluster called WHL0137-08, which is gravitational lensing the most strongly magnified galaxy known in the Universe’s first billion years: the Sunrise Arc, and within that galaxy, the most distant star ever detected. The star is , nicknamed Earendel. NASA, ESA, CSA, D. Coe (AURA/STScI for ESA), Z. Levay

In March 2022, astronomers announced the discovery of the farthest known star via an image taken by the Hubble Space Telescope. They named it Earendel, after the old English name for “morning star”. Now, JWST’s Near-infrared Camera (NIRCam) and its NIRSpec spectrometer have taken a look at the same star and revealed more details about it.

Continue reading “JWST Turns its Gaze on the Farthest Known Star: Earendel”

JWST Sees Multiple Gravitational Lenses in a Massive Cluster: “The Fishhook” and “The Thin One”

We’ve been getting plenty of spectacular images from the James Webb Space Telescope since it began operations last year. Fraser even covered everything we learned from it in a video a few weeks ago. But the news keeps coming, and recently a science team known as the Prime Extra-Galactic Areas for Reionization and Lensing Science (PEARLS) team released a series of four papers describing Webb’s observations of a galaxy cluster known as El Gordo (“the fat one” in Spanish). But what’s more – they also released another absolutely stunning picture.

Continue reading “JWST Sees Multiple Gravitational Lenses in a Massive Cluster: “The Fishhook” and “The Thin One””

Jupiter’s Moons Get the JWST Treatment

Spectroscopic map of Ganymede (left) obtained from JWST’s Near-Infrared Spectrograph (NIRSpec) instrument displaying light absorption in the polar regions distinctive of the molecule hydrogen peroxide. A JWST NIRSpec infrared image of Io (right) displaying volcanic eruptions at Kanehekili Fluctus (center) and Loki Patera (right) with temperatures up to 1200 Kelvin (926.85 degrees Celsius/1700 degrees Fahrenheit). Circles indicate the surfaces of both moons. (Credit: Ganymede: Cornell/Dr. Samantha Trumbo; Io: UC Berkeley/Dr. Imke de Pater)

A pair of studies published in JGR: Planets and Science Advances discuss new findings from NASA’s James Webb Space Telescope (JWST) regarding Jupiter’s first and third Galilean Moons, Io and Ganymede, and more specifically, how the massive Jupiter is influencing activity on these two small worlds. For Io, whose mass is about 21 percent larger than Earth’s Moon, the researchers made the first discovery of sulfur monoxide (SO) gas on the volcanically active moon. For Ganymede, which is the largest moon in the solar system and boasts twice the mass of the Earth’s Moon, the researchers made the first discovery of hydrogen peroxide, which exists in Ganymede’s polar regions.

Continue reading “Jupiter’s Moons Get the JWST Treatment”

Carbon-Based Molecules Seen Just a Billion Years After the Big Bang

A crop of the JADES Survey field that JWST observed, using its NIRCAM instrument to search for carbon-based molecules.
A crop of the JADES Survey field that JWST observed, using its NIRCAM instrument to search for carbon-based molecules.

The more astronomers look at the early Universe, the more discoveries they make. Some of those finds change what they thought they knew about the infancy of the cosmos. For example, the James Webb Space Telescope (JWST) recently found evidence of carbon-based molecules and dust existing only a billion years after the Big Bang. It looks a bit different from the dust observed later in the Universe.

Continue reading “Carbon-Based Molecules Seen Just a Billion Years After the Big Bang”