Webb Sees a Star in the Midst of Formation

In this JWST image, a young protostar is growing larger and emitting jets of material from inside its molecular cloud. Image Credit: NASA, ESA, CSA, STScI

Wherever the JWST looks in space, matter and energy are interacting in spectacular displays. The Webb reveals more detail in these interactions than any other telescope because it can see through dense gas and dust that cloak many objects.

In a new image, the JWST spots a young protostar only 100,000 years old.

Continue reading “Webb Sees a Star in the Midst of Formation”

Is the JWST Now an Interplanetary Meteorologist?

This artist’s concept shows what the hot gas-giant exoplanet WASP-43 b could look like. Image Credits: NASA, ESA, CSA, Ralf Crawford (STScI)

The JWST keeps one-upping itself. In the telescope’s latest act of outdoing itself, it examined a distant exoplanet to map its weather. The forecast?

An unending, blistering inferno driven by ceaseless supersonic winds.

Continue reading “Is the JWST Now an Interplanetary Meteorologist?”

Webb Joins the Hunt for Protoplanets

This artist’s impression shows the formation of a gas giant planet embedded in the disk of dust and gas in the ring of dust around a young star. A University of Michigan study aimed the James Webb Space Telescope at a protoplanetary disk surrounding a protostar called SAO 206462, hoping to find a gas giant planet in the act of forming. Image credit: ESO/L. Calçada

We can’t understand what we can’t clearly see. That fact plagues scientists who study how planets form. Planet formation happens inside a thick, obscuring disk of gas and dust. But when it comes to seeing through that dust to where nascent planets begin to take shape, astronomers have a powerful new tool: the James Webb Space Telescope.

Continue reading “Webb Joins the Hunt for Protoplanets”

Another Hycean Planet Found? TOI-270 d

Artist's impression of the surface of a hycean world. Hycean worlds are still hypothetical, and have large oceans and thick hydrogen-rich atmospheres that trap heat. They could be habitable even if they're outside the traditional habitable zone. Credit: University of Cambridge

Hycean planets may be able to host life even though they’re outside what scientists consider the regular habitable zone. Their thick atmospheres can trap enough heat to keep the oceans warm even though they’re not close to their stars.

Astronomers have found another one of these potential hycean worlds named TOI-270 d.

Continue reading “Another Hycean Planet Found? TOI-270 d”

This Galaxy Was Already Dead When the Universe Was Only 700 Million Years Old

False-color JWST image of a small fraction of the GOODS South field, with the galaxy JADES-GS-z7-01-QU highlighted Credit: JADES Collaboration
False-color JWST image of a small fraction of the GOODS South field, with the galaxy JADES-GS-z7-01-QU highlighted Credit: JADES Collaboration

When a galaxy runs out of gas and dust, the process of star birth stops. That takes billions of years. But, there’s a galaxy out there that was already dead when the Universe was only 700 million years old. What happened to it?

Continue reading “This Galaxy Was Already Dead When the Universe Was Only 700 Million Years Old”

JWST Sees a Milky Way-Like Galaxy Coming Together in the Early Universe

The ancient Firefly Sparkle galaxy is precursor to galaxies like the Milky Way. The JWST found ten separate clusters in the galaxy that show how the galaxy is growing through mergers. Image Credit: Mowla et al. 2024.

The gigantic galaxies we see in the Universe today, including our own Milky Way galaxy, started out far smaller. Mergers throughout the Universe’s 13.7 billion years gradually assembled today’s massive galaxies. But they may have begun as mere star clusters.

In an effort to understand the earliest galaxies, the JWST has examined their ancient light for clues as to how they became so massive.

Continue reading “JWST Sees a Milky Way-Like Galaxy Coming Together in the Early Universe”

A New View of Uranus’ North Pole from JWST

One cool thing about Uranus is that its orientation, compared to the rest of the solar system, allows a unique perspective of the planet from our home planet. It is tilted at 98° compared to the rest of the ecliptic plane. So, when viewed from Earth, we can see its North Pole and its rings in some exceptional cases. That perspective is fully displayed in an image of Uranus recently released by the European Space Agency (ESA) and captured using the James Webb Space Telescope (JWST). 

Continue reading “A New View of Uranus’ North Pole from JWST”

Can Webb Find the First Stars in the Universe?

The Universe’s very first stars had an important job. They formed from the primordial elements created by the Big Bang, so they contained no metals. It was up to them to synthesize the first metals and spread them out into the nearby Universe.

The JWST has made some progress in finding the Universe’s earliest galaxies. Can it have the same success when searching for the first stars?

Continue reading “Can Webb Find the First Stars in the Universe?”

JWST Finds the Smallest Free-Floating Brown Dwarf

Star cluster IC 348 seen by the MIRI instrument of JWST. Image credit: NASA, ESA, CSA, STScI, Kevin Luhman (PSU), Catarina Alves de Oliveira (ESA). Brown dwarf image credit: NASA
Star cluster IC 348 seen by the MIRI instrument of JWST. Image credit: NASA, ESA, CSA, STScI, Kevin Luhman (PSU), Catarina Alves de Oliveira (ESA). Brown dwarf image credit: NASA

Star formation is happening all around us in the Universe. However, there is still plenty we don’t know about it, including, as a recent press release points out, something that every astronomy textbook points out – we don’t know the size of the smallest star. Most current answers in those textbooks refer to an object known as a brown dwarf, a cross between a star and a giant planet. Recently, the James Webb Space Telescope (JWST) found what is believed to be the smallest brown dwarf ever discovered – and it weighs in at only 3-4 times the weight of Jupiter.

Continue reading “JWST Finds the Smallest Free-Floating Brown Dwarf”

A Galaxy Only 350 Million Years Old Had Surprising Amounts of Metal

The JWST has the power to see the most ancient galaxies in the Universe, as shown in this image of its first deep field. Now, astrophysicists have found carbon in one of these ancient galaxies. Image Credit: NASA, ESA, CSA, and STScI

Astrophysicists working with the JWST have found a surprising amount of metal in a galaxy only 350 million years after the Big Bang. How does that fit in with our understanding of the Universe?

Continue reading “A Galaxy Only 350 Million Years Old Had Surprising Amounts of Metal”