Finally! Here’s the Video of Webb’s Unboxing

It’s been a long time coming.  Finally, after years of delays and billions of dollars in budget overruns, the James Webb Space Telescope (JWST) is ready to fly.  To celebrate the occasion, ESA released a video showing the “unboxing” of one of the most highly advanced technical achievements in human history.  It is truly as impressive as it sounds.

Continue reading “Finally! Here’s the Video of Webb’s Unboxing”

James Webb’s 30 Days of Terror

It’s been a long and winding road getting the James Webb Space Telescope from concept to reality. And finally, after decades of planning, work, delays, and cost overruns, the next generation of space telescopes is finally ready to launch. But even now, as the telescope might be secretly traveling by cargo ship to the European Space Agency (ESA) launch site in French Guiana, everyone involved with the JWST project knows a successful launch isn’t the final victory.

In reality, post launch is when the real nail-biting begins. While the Mars rover teams undergo “Seven Minutes of Terror” to land their spacecraft on the Red Planet, the JWST teams will have more than 30 days of excruciating, slow-motion terror as the telescope embarks on its month-long-day, 1.5-million-kilometer (million-mile) journey out to the second Lagrange point (L2).

Continue reading “James Webb’s 30 Days of Terror”

Want a LEGO James Webb Space Telescope? It Even Folds Up

As we all anticipate the launch of the James Webb Space Telescope (JWST) later this year (hopefully), LEGO designers are hoping for a “launch” of their own. A new LEGO design of JWST is currently gathering supporters on the LEGO Ideas website. If it gets enough support, LEGO will review it and possibly create it.

As of today (August 12, 2021), the idea has just under 1,500 supporters, with the goal of 10,000. If you want your very own JWST model, cast your vote of support!

Continue reading “Want a LEGO James Webb Space Telescope? It Even Folds Up”

Webb Fully Unfurls for the Last Time on Earth. The Next Time Will Be in Space

The primary mirror of the long-awaited James Webb Space Telescope (JWST) was opened for the last time on Earth before the launch of the observatory, currently scheduled for October 31, 2021.

During some of the final checkouts before the telescope heads to space, engineers commanded the 18 hexagonal mirrors to fully expand and lock into place, just like they will do once the Webb telescope reaches its destination in space.  

Continue reading “Webb Fully Unfurls for the Last Time on Earth. The Next Time Will Be in Space”

James Webb Unfolds Sunshield

It’s almost time.

Soon the James Webb Space Telescope will be on its way to the Sun/Earth L2 Lagrange point and will begin its at least 5-year science mission. Really, it’s going to happen.

Despite several delays since the program began in 1996 and a budget that has exceeded the original by several billion dollars, the launch of the JWST seems close at hand. That is if you consider almost a year away (the new planned launch date is October 31, 2021) to be close.

Continue reading “James Webb Unfolds Sunshield”

It Looks Like James Webb’s Launch Date is Going to Slip to July 2021

Put “James Webb Telescope launch” into your search engine and you’ll be flooded with links, some reaching back to the ‘scope’s first proposed launch date in 2010. The delayed launch of the space telescope is a running theme in the space community, even though we all know it’s going to be worth the wait. So nobody will be surprised by this latest development in the story of the world’s most anticipated telescope.

Continue reading “It Looks Like James Webb’s Launch Date is Going to Slip to July 2021”

NASA’s James Webb Space Telescope will Inspect the Atmospheres of Distant Gas Giants

The James Webb Space Telescope is like the party of the century that keeps getting postponed. Due to its sheer complexity and some anomalous readings that were detected during vibration testing, the launch date of this telescope has been pushed back many times – it is currently expected to launch sometime in 2021. But for obvious reasons, NASA remains committed to seeing this mission through.

Once deployed, the JWST will be the most powerful space telescope in operation, and its advanced suite of instruments will reveal things about the Universe that have never before been seen. Among these are the atmospheres of extra-solar planets, which will initially consist of gas giants. In so doing, the JWST will refine the search for habitable planets, and eventually begin examining some potential candidates.

The JWST will be doing this in conjunction with the Transiting Exoplanet Survey Satellite (TESS), which deployed to space back in April of 2018. As the name suggests, TESS will be searching for planets using the Transit Method (aka. Transit Photometry), where stars are monitored for periodic dips in brightness – which are caused by a planet passing in front of them relative to the observer.

Artist Illustration of TESS and its 4 telescopes. Credit: NASA/MIT
Artist concept of the Transiting Exoplanet Survey Satellite and its 4 telescopes. Credit: NASA/MIT

Some of Webb’s first observations will be conducted through the Director’s Discretionary Early Release Science program –  a transiting exoplanet planet team at Webb’s science operation center. This team is planning on conducting three different types of observations that will provide new scientific knowledge and a better understanding of Webb’s science instruments.

As Jacob Bean of the University of Chicago, a co-principal investigator on the transiting exoplanet project, explained in a NASA press release:

“We have two main goals. The first is to get transiting exoplanet datasets from Webb to the astronomical community as soon as possible. The second is to do some great science so that astronomers and the public can see how powerful this observatory is.”

As Natalie Batalha of NASA Ames Research Center, the project’s principal investigator, added:

“Our team’s goal is to provide critical knowledge and insights to the astronomical community that will help to catalyze exoplanet research and make the best use of Webb in the limited time we have available.”

For their first observation, the JWST will be responsible for characterizing a planet’s atmosphere by examining the light that passes through it. This happens whenever a planet transits in front of a star, and the way light is absorbed at different wavelengths provides clues as to the atmosphere’s chemical composition. Unfortunately, existing space telescopes have not had the necessary resolution to scan anything smaller than a gas giant.

The JWST, with its advanced infrared instruments, will examine the light passing through exoplanet atmospheres, split it into a rainbow spectrum, and then infer the atmospheres’ composition based on which sections of light are missing. For these observations, the project team selected WASP-79b, a Jupiter-sized exoplanet that orbits a star in the Eridanus constellation, roughly 780 light-years from Earth.

The team expects to detect and measure the abundances of water, carbon monoxide, and carbon dioxide in WASP-79b, but is also hoping to find molecules that have not yet been detected in exoplanet atmospheres. For their second observation, the team will be monitoring a “hot Jupiter” known as WASP-43b, a planet which orbits its star with a period of less than 20 hours.

Like all exoplanets that orbit closely to their stars, this gas giant is tidally-locked – where one side is always facing the star. When the planet is in front of the star, astronomers are only able to see its cooler backside; but as it orbits, the hot day-side slowly comes into view. By observing this planet for the entirety of its orbit, astronomers will be able to observe those variations (known as a phase curve) and use the data to map the planet’s temperature, clouds, and atmospheric chemistry.

This data will allow them to sample the atmosphere to different depths and obtain a more complete picture of the planet’s internal structure. As Bean indicated:

“We have already seen dramatic and unexpected variations for this planet with Hubble and Spitzer. With Webb we will reveal these variations in significantly greater detail to understand the physical processes that are responsible.”

An exoplanet about ten times Jupiter’s mass located some 330 light years from Earth. X-ray: NASA/CXC/SAO/I.Pillitteri et al; Optical: DSS; Illustration: NASA/CXC/M.Weiss

For their third observation, the team will be attempting to observe a transiting planet directly. This is very challenging, seeing as how the star’s light is much brighter and therefore obscures the faint light being reflected off the planet’s atmosphere. One method for addressing this is to measure the light coming from a star when the planet is visible, and again when it disappears behind the star.

By comparing the two measurements, astronomers can calculate how much light is coming from the planet alone. This technique works best for very hot planets that glow brightly in infrared light, which is why they selected WASP-18b for this observation – a hot Jupiter that reaches temperatures of around 2,900 K (2627 °C; 4,800 °F). In the process, they hope to determine the composition of the planet’s smothering stratosphere.

In the end, these observations will help test the abilities of the JWST and calibrate its instruments. The ultimate goal will be to examine the atmospheres of potentially-habitable exoplanets, which in this case will include rocky (aka. “Earth-like”) planets that orbit low mass, dimmer red dwarf stars. In addition to being the most common star in our galaxy, red dwarfs are also believed to be the most likely place to find Earth-like planets.

Image: James Webb Space Telescope
NASA’s James Webb Telescope, shown in this artist’s conception, will provide more information about previously detected exoplanets. Beyond 2020, many more next-generation space telescopes are expected to build on what it discovers. Credit: NASA

As Kevin Stevenson, a researcher with the Space Telescope Science Institute and a co-principal investigator on the project, explained:

“TESS should locate more than a dozen planets orbiting in the habitable zones of red dwarfs, a few of which might actually be habitable. We want to learn whether those planets have atmospheres and Webb will be the one to tell us. The results will go a long way towards answering the question of whether conditions favorable to life are common in our galaxy.”

The James Webb Space Telescope will be the world’s premier space science observatory once deployed, and will help astronomers to solve mysteries in our Solar System, study exoplanets, and observe the very earliest periods of the Universe to determine how its large-scale structure evolved over time. For this reason, its understandable why NASA is asking that the astronomical community be patient until they are sure it will deploy successfully.

When the payoff is nothing short of ground-breaking discoveries, it’s only fair that we be willing to wait. In the meantime, be sure to check out this video about how scientists study exoplanet atmospheres, courtesy of the Space Telescope Science Institute:

Further Reading: NASA

Good News, James Webb is Still a Go. Bad News, Launching in 2021

Illustration of NASA's James Webb Space Telescope. Credits: NASA

When it is deployed to space, the James Webb Space Telescope (JWST) will be the most powerful and advanced telescope ever deployed. As the spiritual and scientific successor to the Hubble, Spitzer, and Kepler Space Telescopes, this space observatory will use its advanced suite of infrared instruments to look back at the early Universe, study the Solar System, and help characterize extra-solar planets.

Unfortunately, after many delays, there’s some good news and bad news about this mission. The good news is that recently, the Independent Review Board (IRB) established by NASA to assess the progress on the JWST unanimously decided that work on the space telescope should continue. The bad news is that NASA has decided to push the launch date back again – this time to March 30th, 2021.

As part of their assessment, the IRB was established in April of 2018 to address a range of factors influencing Webb’s schedule and performance. These included the technical challenges and tasks that need to be tackled by its primary contractor (Northrop Grumman) before the mission can launch. A summary of the report’s recommendations, and NASA’s response, can be read here.

The Hubble Space Telescope on the left has a 2.4 meter mirror and the James Webb Space Telescope has a 6.5 meter mirror. LUVOIR, not shown, will dwarf them both with a massive 15 meter mirror. Image: NASA
The Hubble Space Telescope on the left has a 2.4 meter mirror and the James Webb Space Telescope has a 6.5 meter mirror. LUVOIR, not shown, will dwarf them both with a massive 15 meter mirror. Credit: NASA

In the report, the IRB identified technical issues, which including human errors, that they claim have greatly impacted the development schedule. As they stated in their Overview:

“The observation that there are no small JWST integration and test problems was not initially recognized by the Webb IRB, and this also may be true of others involved with JWST. It is a most important observation that will be apparent in subsequent Findings and Recommendations. It is caused by the complexity and highly integrated nature of the observatory. Specifically, it implies, as an example, that a very small human error or test anomaly can impact the schedule by months and the cost by tens of millions of dollars.”

The anomaly mentioned in the report refers to the “anomalous readings” that were detected from the telescope during vibration testing back in December 2016. NASA responded to this by giving the project up to 4 months of schedule reserve by extending the launch window. However, in 2017, NASA delayed the launch window again by 5 months, from October 2018 to a between March and June 2019.

This delay was requested by the project team, who indicated that they needed to address lessons learned from the initial folding and deployment of the observatory’s sun shield. In February of 2018, the Government Accountability Office (GAO) issued a report that expressed concerns over further delays and cost overruns. Shortly thereafter, the JWST’s Standing Review Board (SRB) made an independent assessment of the remaining tasks.

The James Webb Space Telescope being placed in the Johnson Space Center’s historic Chamber A on June 20th, 2017. Credit: NASA/JSC

In May of 2018, NASA issued a statement indicating that they now estimated that the launch window would be some time in May 2020. However, they chose to await the findings of the IRB and consider the data from the JWST’s Standing Review Board before making the final determination. The new launch date was set to accommodate environmental testing and work performances challenges on the sunshield and propulsion system.

According to the IRB report, this latest delay will also result in a budget overrun. “As a result of the delay, Webb’s total lifecycle cost to support the March 2021 launch date is estimated at $9.66 billion,” they concluded. “The development cost estimate to support the new launch date is $8.8B (up from the $8B development cost estimate established in 2011).”

As Jim Bridenstine, the NASA Administrator, indicated in a message to the NASA workforce on Wednesday about the report:

“Webb is vital to the next generation of research beyond NASA’s Hubble Space Telescope. It’s going to do amazing things – things we’ve never been able to do before – as we peer into other galaxies and see light from the very dawn of time. Despite major challenges, the board and NASA unanimously agree that Webb will achieve mission success with the implementation of the board’s recommendations, many of which already are underway.”

In the end, the IRB, SRB and NASA are all in total agreement that the James Webb Space Telescope is a crucial mission that must be seen through. In addition to shedding light on a number of mysteries of the Universe – ranging from the earliest stars and galaxies in the Universe to exoplanet habitability – the JWST will also complement and enhance the discoveries made by other missions.

The combined optics and science instruments of NASA’s James Webb Space Telescope being removed from the Space Telescope Transporter for Air, Road and Sea (STTARS) at the Northrop Grumman company headquarters on March 8th, 2018. Credits: NASA/Chris Gunn

These include not only Hubble and Spitzer, but also missions like the Transiting Exoplanet Survey Satellite (TESS), which launched this past April. Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate, also issued a statement on the recent report:

“The more we learn more about our universe, the more we realize that Webb is critical to answering questions we didn’t even know how to ask when the spacecraft was first designed. Webb is poised to answer those questions, and is worth the wait. The valuable recommendations of the IRB support our efforts towards mission success; we expect spectacular scientific advances from NASA’s highest science priority.”

The JWST will also be the first telescope of its kind, being larger and more complex than any previous space telescope – so challenges were anticipated from its very inception. In addition, the final phase consists of some of the most challenging work, where the 6.5-meter telescope and science payload element are being joined with the spacecraft element to complete the observatory.

The science team also needs to ensure that the observatory can be folded up to fit inside the Ariane 5 rocket that will launch it into space. They also need to ensure that it will unfold again once it reaches space, deploy its sunshield, mirrors and primary mirror. Beyond that, there are also the technical challenges of building a complex observatory that was created here on Earth, but designed to operate in space.

As a collaborative project between NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA), the JWST is also representative of the new era of international cooperation. As such, no one wishes to see the mission abandoned so close to completion. In the meantime, any delays that allow for extra testing will only ensure success in the long run.

Good luck JWST, we look forward to hearing about your first discoveries!

Further Reading: NASA

NASA’s Webb Space Telescope Launch Delayed to 2019

The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

The most powerful space telescope ever built will have to wait on the ground for a few more months into 2019 before launching to the High Frontier and looking back nearly to the beginning of time and unraveling untold astronomical secrets on how the early Universe evolved – Engineers need a bit more time to complete the Webb telescopes incredibly complex assembly and testing here on Earth.

Blastoff of NASA’s mammoth James Webb Space Telescope (JWST) has been postponed from late 2018 to the spring of 2019.

“NASA’s James Webb Space Telescope now is planning to launch between March and June 2019 from French Guiana, following a schedule assessment of the remaining integration and test activities,” the agency announced.

Until now the Webb telescope was scheduled to launch on a European Space Agency (ESA) Ariane V booster from the Guiana Space Center in Kourou, French Guiana in October 2018.

“The change in launch timing is not indicative of hardware or technical performance concerns,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate at Headquarters in Washington, in a statement.

“Rather, the integration of the various spacecraft elements is taking longer than expected.”

NASA’s says the currently approved budget will not bust the budget or reduce the science output. It “accommodates the change in launch date, and the change will not affect planned science observations.”

NASA’s $8.8 Billion James Webb Space Telescope is the most powerful space telescope ever built and is the scientific successor to the phenomenally successful Hubble Space Telescope (HST).

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Up close side-view of newly exposed gold coated primary mirrors installed onto mirror backplane holding structure of NASA’s James Webb Space Telescope inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms. Credit: Ken Kremer/kenkremer.com

Since Webb is not designed to be serviced by astronauts, the extremely thorny telescope deployment process is designed to occur on its own over a period of several months and must be fully successful. Webb will be positioned at the L2 Lagrange point- a gravitationally stable spot approximately 930,000 miles (1.5 million km) away from Earth.

So its better to be safe than sorry and take the extra time needed to insure success of the hugely expensive project.

NASA’s James Webb Space Telescope sits in Chamber A at NASA’s Johnson Space Center in Houston awaiting the colossal door to close in July 2017 for cryogenic testing. Credits: NASA/Chris Gunn

Various completed components of the Webb telescope are undergoing final testing around the country to confirm their suitability for launch.

Critical cryogenic cooling testing of Webb’s mirrors and science instrument bus is proceeding well inside a giant chamber at NASA’s Johnson Space Center in Texas.

However integration and testing of the complex multilayered sunshield at Northrup Grumman’s Redondo Beach, Ca. facility is taking longer than expected and “has experienced delays.”

The tennis court sized sunshield will protect the delicate optics and state of the art infrared science instruments on NASA’s Webb Telescope.

Webb’s four research instruments cannot function without the essential cooling provided by the sunshield deployment to maintain them at an operating temperature of minus 388 degrees F (minus 233 degrees C).

The Webb telescopes groundbreaking sunshield subsystem consists of five layers of kapton that will keep the optics and instruments incredibly cool, by reducing the incoming sunside facing temperature more than 570 degrees Fahrenheit. Each layer is as thin as a human hair.

All 5 layers of the Webb telescope sunshield installed at Northrop Grumman’s clean room in Redondo Beach, California. The five sunshield membrane layers are each as thin as a human hair. Credits: Northrop Grumman Corp.

“Webb’s spacecraft and sunshield are larger and more complex than most spacecraft. The combination of some integration activities taking longer than initially planned, such as the installation of more than 100 sunshield membrane release devices, factoring in lessons learned from earlier testing, like longer time spans for vibration testing, has meant the integration and testing process is just taking longer,” said Eric Smith, program director for the James Webb Space Telescope at NASA Headquarters in Washington, in a statement.

“Considering the investment NASA has made, and the good performance to date, we want to proceed very systematically through these tests to be ready for a Spring 2019 launch.”

Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom. Credit: NASA/ESA

Northrop Grumman designed the Webb telescope’s optics and spacecraft bus for NASA’s Goddard Space Flight Center in Greenbelt, Maryland, which manages Webb.

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about the upcoming ULA Atlas NRO NROL-52 spysat launch on Oct 5 and SpaceX Falcon 9 SES-11 launch on Oct 7, JWST, OSIRIS-REx, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Oct 3-6, 8: “ULA Atlas NRO NROL-52 spysat launch, SpaceX SES-11, CRS-12 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings