Gaia Finds Six Stars Zipping out of the Milky Way

An artist's conception of a hypervelocity star that has escaped the Milky Way. Credit: NASA

In 2013, the European Space Agency launched the Gaia spacecraft. As the successor to the Hipparcos mission, this space observatory has spent the past three and a half years gathering data on the cosmos. Before it retires sometime next year (though the mission could be extended), this information will be used to construct the largest and most precise 3D astronomical map ever created.

In the course of surveying the cosmos, Gaia has also revealed some very interesting things along the way. For example, after examining the Gaia catalog with a specially-designed artificial neural network, a team of European researchers recently detected six new hypervelocity stars in the Milky Way. And one of these stars is moving so fast that it may eventually leave our galaxy.

Their study – titled “An Artificial Neural Network to Discover Hypervelocity Stars: Candidates in Gaia DR1/TGAS” – was recently published in the Monthly Notices of the Royal Astronomical Society. It was presented late last month at the European Week of Astronomy and Space Science, which was being held from June 26th to June 30th in Prague, Czech Republic.

Artist’s conception of the Gaia telescope backdropped by a photograph of the Milky Way taken at the European Southern Observatory. Credit: ESA/ATG medialab; background: ESO/S. Brunier

Hypervelocity stars are a rare and fascinating thing. Whereas all stars in the Milky Way are in constant motion, orbiting around the center of our galaxy, some are accelerated to speeds of up to hundreds of kilometers per second. In the past, astronomers have deduced that these fast-moving stars are the result of a close stellar encounter or a supernova explosion of a stellar companion.

And a little over a decade ago, astronomers became aware of a new class of high-speed stars that are believed to have been accelerated from past interactions with the supermassive black hole (Sagittarius A*) that sits at the center of our galaxy. These stars are extremely important to the study of the overall structure of the Milky Way, as they are indicative of the kinds of events and forces that have shaped its history.

As Elena Maria Rossi, from Leiden University in the Netherlands and one of the co-authors on the paper, explained in an ESA press release:

These are stars that have traveled great distances through the Galaxy but can be traced back to its core – an area so dense and obscured by interstellar gas and dust that it is normally very difficult to observe – so they yield crucial information about the gravitational field of the Milky Way from the centre to its outskirts.

Artist’s impression of stars speeding through the Galaxy. Credit: ESA

Finding such stars is no easy task, mainly because their velocity makes them extremely difficult to spot in the vast and crowded disk of the Milky Way. As a result, scientists have relied on looking for young, massive stars (2.5 to 4 Solar masses) in the old stellar population of the Galactic. Basically, their young age and high masses are indications that they might not have originated there.

Combined with measurements of their past speeds and paths, this method has confirmed the existence of hypervelocity stars in the past. However, only 20 hypervelocity stars have been spotted to date, and they have all been young and massive in nature. Scientists believe that many more stars of other ages and masses are also being accelerated through the Milky Way, but were previously unable to spot them.

To address this, the European team – led by from Tomasso Marchetti of Leiden University in the Netherlands – began considering how to use Gaia‘s vast dataset to optimize the search for more hypervelocity stars. After testing various methods, they adopted the artificial neural net approach – i.e. using a machine learning algorithm – to search through the star census data Gaia is in the process of gathering.

Beginning in the first half of 2016, the team began developing and training this program to be ready for the first release of Gaia data – which occurred a few months later on Sept. 14th, 2016. As Tommaso Marchetti, a PhD student at Leiden University, described the process:

“In the end, we chose to use an artificial neural network, which is software designed to mimic how our brain works. After proper ‘training’, it can learn how to recognize certain objects or patterns in a huge dataset. In our case, we taught it to spot hypervelocity stars in a stellar catalogue like the one compiled with Gaia.”

Artist’s impression of a hypervelocity star that was detected using the ESO’s Very Large Telescope. Credit: ESO

In addition to a map with the positions of over a billion stars, this first data release included a smaller catalogue with the distances and motions for two million stars. This catalog – which is known as the Tycho-Gaia Astrometric Solution (TGAS) – combined data from both the first year of the Gaia mission and with data from the Hipparcos mission, and is essentially a taste of what’s to come from Gaia.

On the day of the catalog’s release, Marchetti and his team ran their algorithm on the two million stars within the TGAS, which revealed some interesting finds. “In just one hour, the artificial brain had already reduced the dataset to some 20 000 potential high-speed stars, reducing its size to about 1%,” said Rossi. “A further selection including only measurements above a certain precision in distance and motion brought this down to 80 candidate stars.”

The team then examined these 80 stars in more detail, and compared the information about their motions to data from other catalogues. Paired with additional observations, they eventually found six stars which appeared to be moving faster than 360 km/s. One even appeared to be exceeding 500 km/s, which means that it is no longer bound by the gravity of our Milky Way and will eventually leave it altogether.

But perhaps the sot significant aspect of this find is the fact these stars are not particularly massive like the previous 20 that had been discovered, and were comparable in mass to our Sun. In addition, the 5 slower stars are likely to become a focal point of study, as scientists are eager to determine what slowed them down. One possible explanation is that interaction with the galaxy’s dark matter might have been responsible.

Gaia’s first sky map. Credit: ESA/Gaia/DPAC. Credit: A. Moitinho & M. Barros (CENTRA – University of Lisbon), on behalf of DPAC.

Much as the TGAS has been merely an early indication of the vast and valuable data Gaia will eventually provide, this study showcases the kinds of discoveries and research that this data will enable. By with not just 2 million, but a billion stars to study, astronomers are sure to reveal many new and exciting things about the dynamics of our Milky Way and the kinds of forces that have shaped it.

For this purpose, Marchetti and his team are upgrading their program to handle the much larger data set, which is scheduled to be released in April of 2018. This catalog will include distance and motions for over a billion stars, as well as velocities for a specific subset. From this, the team may find that fast-moving stars which are being booted out of the Milky Way are a lot more common than previously thought.

And be sure to enjoy this video that shows the paths of these six newly-discovered fast-moving stars, courtesy of the ESA:

Further Reading: ESA

Star-travel 5 Million Years Into The Milky Way’s Future

Credit: ESA/Gaia/DPAC

Two Million Stars on the Move

Gaze into Gaia’s crystal ball and you will see the future. This video shows the motion of 2,057,050 stars in the coming 5 million years from the Tycho-Gaia Astrometric Solution sample, part of the first data release of European Space Agency’s Gaia mission.

Gaia is a space observatory parked at the L2 Lagrange Point, a stable place in space a million miles behind Earth as viewed from the Sun. Its mission is astrometry: measuring the precise positions, distances and motion of 1 billion astronomical objects (primarily stars) to create a three-dimensional map of the Milky Way galaxy. Gaia’s radial velocity measurements — the motion of stars toward or away from us —  will provide astronomers with a stereoscopic and moving-parts picture of about 1% of the galaxy’s stars.

Think about how slowly stars move from the human perspective. Generations of people have lived and died since the days of ancient Greece and yet the constellations outlines and naked eye stars appear nearly identical today as they did then. Only a few stars — Arcturus, Sirius, Aldebaran — have moved enough for a sharp-eyed observer of yore to perceive their motion.

Given enough time, stars do change position, distorting the outlines of the their constellations. This view shows the sky looking north in 91,000 A.D. Both Lyra and the Big Dipper are clearly bent out of shape! Created with Stellarium

We know that stars are constantly on the move around the galactic center. The Sun and stars in its vicinity orbit the core at some half-million miles an hour, but nearly all are so far away that their apparent motion has barely moved the needle over the time span of civilization as we know it.

This video shows more than 2 million stars from the TGAS sample, with the addition of 24,320 bright stars from the Hipparcos Catalogue that weren’t included in Gaia’s first data release back in September 2016. The video starts from the positions of stars as measured by Gaia between 2014 and 2015, and shows how these positions are expected to evolve in the future, based on the stars’ proper motions or direction of travel across space.

This frame will help you get your footing as you watch the video. Orion (at right) and the Alpha Persei stellar association and Pleiades (at left) are shown. Credit: ESA/Gaia/DPAC

Watching the show

The frames in the video are separated by 750 years, and the overall sequence covers 5 million years. The dark stripes visible in the early frames reflect the way Gaia scans the sky (in strips) and the early, less complete database. The artifacts are gradually washed out as stars move across the sky.

Using the map above to get oriented, it’s fun to watch Orion change across the millennia. Betelgeuse departs the constellation heading north fairly quickly, but Orion’s Belt hangs in there for nearly 2 million years even if it soon develops sag! The Pleiades drift together to the left and off frame and then reappear at right.

Stars seem to move with a wide range of velocities in the video, with stars in the galactic plane moving quite slow and faster ones speeding across the view. This is a perspective effect: most of the stars we see in the plane are much farther from us, and thus seem to be moving slower than the nearby stars, which are visible across the entire sky.

Artist’s impression of The Milky Way Galaxy to provide context for the video. The Sun and solar system are located in the flat plane of the galaxy, so when we look into the Milky Way (either toward the center or toward the edge), the stars pile up across the light years to form a band in the sky. If we could rise above the disk and see the galaxy from the halo, we’d be able to look down (or up) and see the galaxy as a disk with winding spiral arms. Credit: NASA

Some of the stars that appear to zip in and out of view quickly are passing close to the Sun. But motion of those that trace arcs from one side of the sky to the other while passing close to the galactic poles (top and bottom of the frame) as they speed up and slow down, is spurious. These stars move with a constant velocity through space.

Stars located in the Milky Way’s halo, a roughly spherical structure centered on the galaxy’s spiral disk, also appear to move quite fast because they slice through the galactic plane with respect to the Sun. In reality, halo stars move very slowly with respect to the center of the galaxy.

Early in the the visualization, we see clouds of interstellar gas and dust that occupy vast spaces within the galaxy and block the view of more distant suns. That these dark clouds seem to disappear over time is also a spurious effect.

After a few million years, the plane of the Milky Way appears to have shifted towards the right as a consequence of the motion of the Sun with respect to that of nearby stars in the Milky Way. Regions that are depleted of stars in the video will not appear that way to future stargazers but will instead be replenished by stars not currently sampled by Gaia. So yes, there are a few things to keep in mind while watching these positional data converted into stellar motions, but the overall picture is an accurate one.

I find the video as mesmerizing as watching fireflies on a June night. The stars seem alive. Enjoy your ride in the time machine!

The Magellenic Clouds Stay Connected By A String Of Stars

This image shows the two "bridges" that connect the Large and Small Magellanic Clouds. The white line traces the bridge of stars that flows between the two dwarf galaxies, and the blue line shows the gas. Image: V. Belokurov, D. Erkal and A. Mellinger
This image shows the two "bridges" that connect the Large and Small Magellanic Clouds. The white line traces the bridge of stars that flows between the two dwarf galaxies, and the blue line shows the gas. Image: V. Belokurov, D. Erkal and A. Mellinger

Astronomers have finally observed something that was predicted but never seen: a stream of stars connecting the two Magellanic Clouds. In doing so, they began to unravel the mystery surrounding the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). And that required the extraordinary power of the European Space Agency’s (ESA) Gaia Observatory to do it.

The Large and Small Magellanic Clouds (LMC and SMC) are dwarf galaxies to the Milky Way. The team of astronomers, led by a group at the University of Cambridge, focused on the clouds and on one particular type of very old star: RR Lyrae. RR Lyrae stars are pulsating stars that have been around since the early days of the Clouds. The Clouds have been difficult to study because they sprawl widely, but Gaia’s unique all-sky view has made this easier.

Small and Large Magellanic Clouds over Paranal Observatory Credit: ESO/J. Colosimo

The Mystery: Mass

The Magellanic Clouds are a bit of a mystery. Astronomers want to know if our conventional theory of galaxy formation applies to them. To find out, they need to know when the Clouds first approached the Milky Way, and what their mass was at that time. The Cambridge team has uncovered some clues to help solve this mystery.

The team used Gaia to detect RR Lyrae stars, which allowed them to trace the extent of the LMC, something that has been difficult to do until Gaia came along. They found a low-luminosity halo around the LMC that stretched as far as 20 degrees. For the LMC to hold onto stars that far away means it would have to be much more massive than previously thought. In fact, the LMC might have as much as 10 percent of the mass that the Milky Way has.

The Large Magellanic Cloud. Image: Public Domain,

The Arrival of the Magellanic Clouds

That helped astronomers answer the mass question, but to really understand the LMC and SMC, they needed to know when the clouds arrived at the Milky Way. But tracking the orbit of a satellite galaxy is impossible. They move so slowly that a human lifetime is a tiny blip compared to them. This makes their orbit essentially unobservable.

But astronomers were able to find the next best thing: the often predicted but never observed stellar stream, or bridge of stars, stretching between the two clouds.

A star stream forms when a satellite galaxy feels the gravitational pull of another body. In this case, the gravitational pull of the LMC allowed individual stars to leave the SMC and be pulled toward the LMC. The stars don’t leave at once, they leave individually over time, forming a stream, or bridge, between the two bodies. This action leaves a luminous tracing of their path over time.

The astronomers behind this study think that the bridge actually has two components: stars stripped from the SMC by the LMC, and stars stripped from the LMC by the Milky Way. This bridge of RR Lyrae stars helps them understand the history of the interactions between all three bodies.

A Bridge of Stars… and Gas

The most recent interaction between the Clouds was about 200 million years ago. At that time, the Clouds passed close by each other. This action formed not one, but two bridges: one of stars and one of gas. By measuring the offset between the star bridge and the gas bridge, they hope to narrow down the density of the corona of gas surrounding the Milky Way.

Mystery #2: The Milky Way’s Corona

The density of the Milky Way’s Galactic Corona is the second mystery that astronomers hope to solve using the Gaia Observatory.

The Galactic Corona is made up of ionised gas at very low density. This makes it very difficult to observe. But astronomers have been scrutinizing it intensely because they think the corona might harbor most of the missing baryonic matter. Everybody has heard of Dark Matter, the matter that makes up 95% of the matter in the universe. Dark Matter is something other than the normal matter that makes up familiar things like stars, planets, and us.

The other 5% of matter is baryonic matter, the familiar atoms that we all learn about. But we can only account for half of the 5% of baryonic matter that we think has to exist. The rest is called the missing baryonic matter, and astronomers think it’s probably in the galactic corona, but they’ve been unable to measure it.

A part of the Small Magellanic Cloud galaxy is dazzling in this image from NASA’s Great Observatories. The Small Magellanic Cloud is about 200,000 light-years way from our own Milky Way spiral galaxy. Credit: NASA.

Understanding the density of the Galactic Corona feeds back into understanding the Magellanic Clouds and their history. That’s because the bridges of stars and gas that formed between the Small and Large Magellanic Clouds initially moved at the same speed. But as they approached the Milky Way’s corona, the corona exerted drag on the stars and the gas. Because the stars are small and dense relative to the gas, they travelled through the corona with no change in their velocity.

But the gas behaved differently. The gas was largely neutral hydrogen, and very diffuse, and its encounter with the Milky Way’s corona slowed it down considerably. This created the offset between the two streams.


The team compared the current locations of the streams of gas and stars. By taking into account the density of the gas, and also how long both Clouds have been in the corona, they could then estimate the density of the corona itself.

When they did so, their results showed that the missing baryonic matter could be accounted for in the corona. Or at least a significant fraction of it could. So what’s the end result of all this work?

It looks like all this work confirms that both the Large and Small Magellanic Clouds conform to our conventional theory of galaxy formation.

Mystery solved. Way to go, science.

Will Gaia Be Our Next Big Exoplanet Hunter?

ESA's Gaia is currently on a five-year mission to map the stars of the Milky Way. Image credit: ESA/ATG medialab; background: ESO/S. Brunier.

Early on the morning of Dec. 19, 2013, the pre-dawn sky above the coastal town of Kourou in French Guiana was briefly sliced by the brilliant exhaust of a Soyuz VS06 rocket as it ferried ESA’s “billion-star surveyor” Gaia into space, on its way to begin a five-year mission to map the precise locations of our galaxy’s stars. From its position in orbit around L2 Gaia will ultimately catalog the positions of over a billion stars… and in the meantime it will also locate a surprising amount of Jupiter-sized exoplanets – an estimated 21,000 by the end of its primary mission in 2019.

And, should Gaia continue observations in extended missions beyond 2019 improvements in detection methods will likely turn up even more exoplanets, anywhere from 50,000 to 90,000 over the course of a ten-year mission. Gaia could very well far surpass NASA’s Kepler spacecraft for exoplanet big game hunting!

“It is not just the number of expected exoplanet discoveries that is impressive”, said former mission project scientist Michael Perryman, lead author on a report titled Astrometric Exoplanet Detection with Gaia. “This particular measurement method will give us planet masses, a complete exoplanet survey around all types of stars in our Galaxy, and will advance our knowledge of the existence of massive planets orbiting far out from their host stars”.

Watch: ESA’s Gaia Launches to Map the Milky Way

Artist's impression of a Jupiter-sized exoplanet orbiting an M-dwarf star
Artist’s impression of a Jupiter-sized exoplanet orbiting an M-dwarf star

The planets Gaia will be able to spot are expected to be anywhere from 1 to fifteen times the mass of Jupiter in orbit around Sun-like stars out to a distance of about 500 parsecs (1,630 light-years) from our own Solar System. Exoplanets orbiting smaller red dwarf stars will also be detectable, but only within about a fifth of that distance.

While other space observatories like NASA’s Kepler and CNES/ESA’s CoRoT were designed to detect exoplanets through the transit method, whereby a star’s brightness is dimmed ever-so-slightly by the silhouette of a passing planet, Gaia will detect particularly high-mass exoplanets by the gravitational wobble they impart to their host stars as they travel around them in orbit. This is known as the astrometric method.

A select few of those exoplanets will also be transiting their host stars as seen from Earth – anywhere from 25 to 50 of them – and so will be observable by Gaia as well as from many ground-based transit-detection observatories.

Read more: Gaia is “Go” for Science After a Few Minor Hiccups

After some issues with stray light sneaking into its optics, Gaia was finally given the green light to begin science observations at the end of July and has since been diligently scanning the stars from L2, 1.5 million km from Earth.

With the incredible ability to measure the positions of a billion stars each to an accuracy of 24 microarcseconds – that’s like measuring the width of a human hair from 1,000 km – Gaia won’t be “just” an unprecedented galactic mapmaker but also a world-class exoplanet detector! Get more facts about the Gaia mission here. 

The team’s findings have been accepted for publication in The Astrophysical Journal.

Source: ESA

Keeping An Eye On Gaia

ESA's Gaia spacecraft as seen by the VLT (Credit: ESO)

Gaia, ESA’s long-anticipated mission to map the stars of our galaxy (as well as do a slew of other cool science things) is now tucked comfortably in its position in orbit around Earth-Moon L2, a gravitationally stable spot in space 1.5 million km (932,000 miles) away.

Once its mission begins in earnest, Gaia will watch about a billion stars an average of 70 times each over a five-year span… that’s 40 million observations every day. It will measure the position and key physical properties of each star, including its brightness, temperature and chemical composition, and help astronomers create the most detailed 3D map of the Milky Way ever.

But before Gaia can do this, its own position must be precisely determined. And so several of the world’s most high-powered telescopes are trained on Gaia, keeping track daily of exactly where it is up to an accuracy of 150 meters… which, with the ten-meter-wide spacecraft one and a half million kilometers away, isn’t too shabby.

Called GBOT, for Ground Based Orbit Tracking, the campaign to monitor Gaia’s position was first set up in 2008 — long before the mission launched. This allowed participating observatories to practice targeting on other existing spacecraft, like NASA’s WMAP and ESA’s Planck space telescopes.

The image above shows an image of Gaia (circled) as seen by the European Southern Observatory’s Very Large Telescope Survey Telescope (VST) atop Cerro Paranal in Chile, one of the supporting observatories in the GBOT campaign. The images were taken with the 2.6-meter Survey Telescope’s 268-megapixel OmegaCAM on Jan. 23, 6.5 minutes apart. With just the reflected sunlight off its circular sunshield, the distant spacecraft is about a million times fainter than what your eyes could see unaided.

Gaia mapping the stars of the Milky Way. (ESA/ATG medialab; background: ESO/S. Brunier)
Gaia mapping the stars of the Milky Way. (ESA/ATG medialab; background: ESO/S. Brunier)

It’s also one the closest objects ever imaged by the VST.

Currently Gaia is still undergoing calibration for its survey mission. Some problems have been encountered with stray sunlight reaching its detectors, and this may be due to the angle of the sunshield being a few degrees too high relative to the Sun. It could take a few weeks to implement an orientation correction; read more on the Gaia blog here.

Read more: Ghostly Cat’s Eye Nebula Shines In Space Telescope Calibration Image

Of the billion stars Gaia will observe, 99% have never had their distances accurately measured. Gaia will also observe 500,000 distant quasars, search for brown dwarfs and exoplanets, and will conduct experiments testing Einstein’s General Theory of Relativity. Find out more facts about the mission here.

Gaia launched on December 19, 2013, aboard a Soyuz VS06 from ESA’s spaceport in Kourou, French Guiana. Watch the launch here.

Source: ESA

Watch Gaia Go From Lab to Launch in Two Minutes

In the early pre-dawn hours on December 19, 2013, with a rumble and a roar, a Soyuz rocket blazed through the clouds above the jungle-lined coast of French Guiana, ferrying ESA’s long-awaited Gaia spacecraft into orbit and beginning its mission to map the stars of the Milky Way. The fascinating time-lapse video above from ESA shows the Gaia spacecraft inside the clean room unfurling like a flower during its sunshield deployment test, the transfer of the Soyuz from the assembly building to the pad, and then its ultimate fiery liftoff.

That’s a lot going on in two minutes! But once nestled safely in its L2 orbit 1.5 million kilometers out, Gaia will have over five years to complete its work… read more here.

Credit: ESA–S. Corvaja, M. Pedoussaut, 2013. Source: ESA