The amazing Gaia mission to chart stars in the Milky Way Galaxy is also an expert asteroid hunter. Now, astronomers are reporting its success at spotting more moons of asteroids in our solar system. Once the Gaia data from its release 3 are confirmed, those observations will add 352 more binary asteroids to the known count. That nearly doubles the known number of asteroids with moons and previous Gaia data releases also revealed asteroids in its survey.
Continue reading “Gaia Finds Hundreds of Asteroid Moons”Gaia Hit by a Micrometeoroid AND Caught in a Solar Storm
For over ten years, the ESA’s Gaia Observatory has monitored the proper motion, luminosity, temperature, and composition of over a billion stars throughout our Milky Way galaxy and beyond. This data will be used to construct the largest and most precise 3D map of the cosmos ever made and provide insight into the origins, structure, and evolutionary history of our galaxy. Unfortunately, this sophisticated astrometry telescope is positioned at the Sun-Earth L2 Lagrange Point, far beyond the protection of Earth’s atmosphere and magnetosphere.
As a result, Gaia has experienced two major hazards in recent months that could endanger the mission. These included a micrometeoroid impact in April that disrupted some of Gaia‘s very sensitive sensors. This was followed by a solar storm in May—the strongest in 20 years—that caused electrical problems for the mission. These two incidents could threaten Gaia‘s ability to continue mapping stars, planets, comets, asteroids, quasars, and other objects in the Universe until its planned completion date of 2025.
Continue reading “Gaia Hit by a Micrometeoroid AND Caught in a Solar Storm”The Milky Way’s Last Merger Event Was More Recent Than Thought
The Milky Way is only as massive as it is because of collisions and mergers with other galaxies. This is a messy process, and we see the same thing happening with other galaxies throughout the Universe. Currently, we see the Milky Way nibbling at its two satellite galaxies, the Large and Small Magellanic Clouds. Their fate is likely sealed, and they’ll be absorbed into our galaxy.
Researchers thought the last major merger occurred in the Milky Way’s distant past, between 8 and 11 billion years ago. But new research amplifies the idea that it was much more recent: less than 3 billion years ago.
Continue reading “The Milky Way’s Last Merger Event Was More Recent Than Thought”The Milky Way’s Most Massive Stellar Black Hole is Only 2,000 Light Years Away
Astronomers have found the largest stellar mass black hole in the Milky Way so far. At 33 solar masses, it dwarfs the previous record-holder, Cygnus X-1, which has only 21 solar masses. Most stellar mass black holes have about 10 solar masses, making the new one—Gaia BH3—a true giant.
Continue reading “The Milky Way’s Most Massive Stellar Black Hole is Only 2,000 Light Years Away”For its Next Trick, Gaia Could Help Detect Background Gravitational Waves in the Universe
Ripples in a pond can be captivating on a nice sunny day as can ripples in the very fabric of space, although the latter are a little harder to observe. Using the highly tuned Gaia probe, a team of astronomers propose that it might just be possible to detect gravitational waves through the disturbance they impart on the movement of asteroids in our Solar System!
Continue reading “For its Next Trick, Gaia Could Help Detect Background Gravitational Waves in the Universe”Gaia is so Accurate it Can Predict Microlensing Events
The ESA’s Gaia Observatory continues its astrometry mission, which consists of measuring the positions, distances, and motions of stars (and the positions of orbiting exoplanets) with unprecedented precision. Launched in 2013 and with a five-year nominal mission (2014-2019), the mission is expected to remain in operation until 2025. Once complete, the mission data will be used to create the most detailed 3D space catalog ever, totaling more than 1 billion astronomical objects – including stars, planets, comets, asteroids, and quasars.
Another benefit of this data, according to a team of researchers led by the Chinese Academy of Sciences (CAS), is the ability to predict future microlensing events. Similar to gravitational lensing, this phenomenon occurs when light from background sources is deflected and amplified by foreground objects. Using information from Gaia‘s third data release (DR3), the team predicted 4500 microlensing events, 1664 of which are unlike any we have seen. These events will allow astronomers to conduct lucrative research into distant star systems, exoplanets, and other celestial objects.
Continue reading “Gaia is so Accurate it Can Predict Microlensing Events”A Huge New Gaia Data Release: More Stars, Gravitational Lenses and Asteroids
The ESA’s Gaia mission is releasing a new tranche of astronomical data. The mission has released three regular, massive hauls of data since it launched in 2013, named Gaia DR1, DR2, and DR3. The ESA is calling this one a ‘focused product release,’ and while it’s smaller than the previous three releases, it’s still impactful.
Continue reading “A Huge New Gaia Data Release: More Stars, Gravitational Lenses and Asteroids”Gaia is Now Finding Planets. Could it Find Another Earth?
The ESA launched Gaia in 2013 with one overarching goal: to map more than one billion stars in the Milky Way. Its vast collection of data is frequently used in published research. Gaia is an ambitious mission, though it seldom makes headlines on its own.
But that could change.
Continue reading “Gaia is Now Finding Planets. Could it Find Another Earth?”Astronomers Find a Planet Using Gaia Data
The ESA’s Gaia mission is our most accurate star-measuring spacecraft. It’s busy mapping the positions and radial velocities of one billion stars in the Milky Way. The mission’s goal is to create a representative map of the galaxy’s stellar population with unprecedented accuracy. The mission has released 3 sets of data since its inception, leading to many discoveries.
Now a team of astronomers has found an exoplanet with help from Gaia, an unintended result of the ambitious mission.
Continue reading “Astronomers Find a Planet Using Gaia Data”Not Just Stars. Gaia Mapped a Diverse and Shifting Universe of Variable Objects
We’ve reported on Gaia’s incredible data-collection abilities in the past. Recently, it released DR3, its latest data set, with over 1.8 billion objects in it. That’s a lot of data to sift through, and one of the most effective ways to do so is through machine learning. A group of researchers did just that by using a supervised learning algorithm to classify a particular type of object found in the data set. The result is one of the world’s most comprehensive catalogs of the type of astronomical object known as variables.
Continue reading “Not Just Stars. Gaia Mapped a Diverse and Shifting Universe of Variable Objects”