A Solar Gravitational Lens Will be Humanity's Most Powerful Telescope. What are its Best Targets?

mage of a simulated Earth, at 1024×1024 pixel resolution, at the distance of Proxima Centauri,at 1.3 pc, as projectedby the SGL to an image plane at 650 AU from the Sun. Credit: Toth H. & Turyshev, S.G.

One of the central predictions of general relativity is that a massive object such as a star, galaxy, or black hole can deflect light passing nearby. This means that light from distant objects can be gravitationally lensed by objects closer to us. Under the right conditions, gravitational lensing can act as a kind of natural telescope, brightening and magnifying the light of distant objects. Astronomers have used this trick to observe some of the most distant galaxies in the universe. But astronomers have also thought about using this effect a little closer to home.

Continue reading “A Solar Gravitational Lens Will be Humanity's Most Powerful Telescope. What are its Best Targets?”

Earthlike Worlds With Oceans and Continents Could be Orbiting red Dwarfs, Detectable by James Webb

“Go then, there are other worlds than these.” Or so Stephen King said in his famous Dark Tower series. As of yet, none of those worlds are known to be like Earth. But, according to some new simulations by researchers at the National Astronomical Observatory of Japan (NAOJ), finding a genuinely Earth-like world might be in the cards by the decade’s end.

Continue reading “Earthlike Worlds With Oceans and Continents Could be Orbiting red Dwarfs, Detectable by James Webb”

Two “Super Mercury” Exoplanets Found in a Single System

Mercury gives a clue to Super-Mercuries
Astronomers have found a star system with two planets like Mercury, but bigger. Our own Mercury could supply clues to their composition and formation. (Credit: NASA/Johns Hopkins University/Applied Physics Laboratory.Carnegie Institution of Washington).

There’s a star system out there with three super-Earth planets and two super-Mercuries. Super-Earths are fairly familiar types of exoplanets, but super-Mercuries are rare. Those are planets with the same composition as our own Mercury, but larger and denser. Yet, here’s HD 23472, showing off two of eight known super-Mercuries in the galaxy.

Continue reading “Two “Super Mercury” Exoplanets Found in a Single System”

Habitable Planets Will Most Likely be Cold, Dry “Pale Yellow Dots”

An artist's concept of K2-18b, a super-Earth exoplanet that could support life. But, not all habitable planets are pale blue dots. Some are dry and yellow. Courtesy STScI

Remember all the habitable planets we’ve seen in science fiction movies? There’s wintry Hoth, for example, and overwhelmingly hot Dune. The folks in Interstellar visited an ocean world and a desolate rocky world. For all their differences, these places were still what they call on Star Trek M-class habitable worlds. Sure they weren’t all like Earth, but that made them excitingly alien for the lifeforms they did support. In the real universe, it seems that alien worlds not quite like ours could be the norm. Earth could be the real alien world.

Continue reading “Habitable Planets Will Most Likely be Cold, Dry “Pale Yellow Dots””

A new way to Discover Planets? Astronomers Detect an Exoplanet by Seeing its Trojan Belts

Artist view of a planet and protoplanetary disk around a young star. Credit: M.Weiss/Center for Astrophysics | Harvard & Smithsonian

Although we have found thousands of exoplanets in recent years, we really only have three methods of finding them. The first is to observe a star dimming slightly as a planet passes in front of it (transit method). The second is to measure the wobble of a star as an orbiting planet gives it a gravitational tug (Doppler method). The third is to observe the exoplanet directly. Now a new study in the Astrophysical Journal Letters has a fourth method.

Continue reading “A new way to Discover Planets? Astronomers Detect an Exoplanet by Seeing its Trojan Belts”

JWST Takes Its First Image of an Exoplanet

This image shows the exoplanet HIP 65426 b in different bands of infrared light, as seen from the James Webb Space Telescope. This is the first exoplanet imaged by JWST. Credit: NASA/ESA/CSA, A Carter (UCSC), the ERS 1386 team, and A. Pagan (STScI).

The James Webb Space Telescope has taken its first direct image of an exoplanet, a planet outside our Solar System. The exoplanet, HIP 65425 b is a gas giant that orbits an A-type star, has a mass of about nine times that of Jupiter and is about 355 light-years from Earth. While the planet has virtually no chance of being habitable, the data from these observations show just how powerful a tool JWST will be for studying exoplanets.

Continue reading “JWST Takes Its First Image of an Exoplanet”

A Planet has Been Found That Shifts In and Out of the Habitable Zone

Schematic diagram of the newly discovered Ross 508 planetary system. The green region represents the habitable zone where liquid water can exist on the planetary surface. The planetary orbit is shown as a blue line. Credit: Astrobiology Center.

A super-Earth planet has been found orbiting a red dwarf star, only 37 light-years from the Earth. Named Ross 508 b, the newly found world has an unusual elliptical orbit that causes it to shift in and out of the habitable zone. Therefore, part of the time conditions would be conducive for liquid water to exist on the planet’s surface, but other times it wouldn’t.

Continue reading “A Planet has Been Found That Shifts In and Out of the Habitable Zone”

JWST Finds a Clear, Unambiguous Signal for Carbon Dioxide in an Exoplanet’s Atmosphere

A transmission spectrum of the hot gas giant exoplanet WASP-39 b, captured by Webb’s Near-Infrared Spectrograph (NIRSpec) on July 10, 2022, reveals the first definitive evidence for carbon dioxide in the atmosphere of a planet outside the Solar System. Credit: NASA, ESA, CSA, and L. Hustak (STScI). Science: The JWST Transiting Exoplanet Community Early Release Science Team

An early – and exciting — science result from the James Webb Space Telescope (JWST) was announced today: the first unambiguous detection of carbon dioxide in the atmosphere of an exoplanet. This is the first detailed evidence for carbon dioxide ever detected in a planet outside our Solar System.

Continue reading “JWST Finds a Clear, Unambiguous Signal for Carbon Dioxide in an Exoplanet’s Atmosphere”

One Exciting way to Find Planets: Detect the Signals From Their Magnetospheres

Artistic rendering of the Tau Boötes b system, showing the planet and its magnetic field. Credit: Jack Madden/Cornell University

We have discovered thousands of exoplanets in recent years. Most have them have been discovered by the transit method, where an optical telescope measures the brightness of a star over time. If the star dips very slightly in brightness, it could indicate that a planet has passed in front of it, blocking some of the light. The transit method is a powerful tool, but it has limitations. Not the least of which is that the planet must pass between us and its star for us to detect it. The transit method also relies on optical telescopes. But a new method could allow astronomers to detect exoplanets using radio telescopes.

Continue reading “One Exciting way to Find Planets: Detect the Signals From Their Magnetospheres”

Hot Stars Blast Away at gas Giants Until Only Their Rocky Cores Remain

Artist view of a Neptune-sized planet orbiting a blue A-type star. Credit: Steven Giacalone, UC Berkeley

In our solar system, we have two types of planets. Small, warm, rocky worlds populate the inner region, while the outer region has cold gas giants. Intuitively this makes a lot of sense. When the solar system was forming, the Sun’s light and heat must have pushed much of the gas toward the outer system, leaving heavier dust and rock to form the inner worlds. Giants could only grow in the cold, dark outer solar system. But we now know our solar system is more the exception than the rule. Many star systems have large gas planets that orbit close to their stars. These hot Jupiters and hot Neptunes are unlike anything in our solar system, and astronomers are keen to understand what they may be like.

Continue reading “Hot Stars Blast Away at gas Giants Until Only Their Rocky Cores Remain”