Giant Exoplanet is Spiraling Inward to its Doom

Kepler 1658b may spiral in to its aging star in the distant future.
Kepler 1658b may spiral in to its aging star in the distant future. Credit: Gabriel Perez Diaz/Instituto de Astrofísica de Canarias

“Death by star” is a fate awaiting most planets in star systems. That includes our Sun, Venus, and Mercury a few billion years from now. And, astronomers now see that same fate awaiting Kepler-1658b. It’s a hot Jupiter exoplanet orbiting an evolved F-type yellow-white dwarf star about 2600 light-years away from Earth.

Continue reading “Giant Exoplanet is Spiraling Inward to its Doom”

Are Planets Tidally Locked to Red Dwarfs Habitable? It’s Complicated

habitable exoplanet interstellar message
Artist's impression of the exoplanet Ross 128 b orbiting its red dwarf star. Potetentially habitable rocky worlds like this one are beyond our physical reach. Image Credit: ESO/M. Kornmesser. Public Domain

Astronomers are keenly interested in red dwarfs and the planets that orbit them. Up to 85% of the stars in the Milky Way could be red dwarfs, and 40% of them might host Earth-like exoplanets in their habitable zones, according to some research.

But there are some problems with their potential habitability. One of those problems is tidal locking.

Continue reading “Are Planets Tidally Locked to Red Dwarfs Habitable? It’s Complicated”

Could Life Survive on Frigid Exo-Earths? Maybe Under Ice Sheets

This artist's illustration shows what an icy exo-Earth might look like. A new study says liquid water could persist under ice sheets on planets outside of their habitable zones. Image Credit: NASA

Our understanding of habitability relies entirely on the availability of liquid water. All life on Earth needs it, and there’s every indication that life elsewhere needs it, too.

Can planets with frozen surfaces somehow have enough water to sustain life?

Continue reading “Could Life Survive on Frigid Exo-Earths? Maybe Under Ice Sheets”

This Hellish Planet Orbits its Star Every 18 Hours. How Did it Get There?

An artist’s impression of the planet 55 Cnc e (smaller, dark orange circle) blocking the light from its rotating host star. Image Credit: Maggie Chiang/Simons Foundation

Astronomers discovered 55 Cancri e in 2004. That was five years before NASA’s Kepler planet-hunting spacecraft was launched, and exoplanet science has come a long way in the intervening years. Astronomers discovered the planet with the radial velocity method rather than Kepler’s transit method. 55 Cancri e was the first super-Earth found around a main-sequence star. The 55 Cancri system was also the first star discovered with four, and then five, planets.

The discovery was big news then; over the years, follow-up work has revealed more details, including that 55 Cancri e is extremely close to its star and has a molten surface.

But one question remained unanswered: How did it get there?

Continue reading “This Hellish Planet Orbits its Star Every 18 Hours. How Did it Get There?”

Astronomers Have Found Two Temperate Super-Earths Orbiting a Nearby Red Dwarf

The telescopes of the SPECULOOS Southern Observatory gaze out into the stunning night sky over the Atacama Desert, Chile. ©ESO/P.Holárek

A team of astronomers has found two Super-Earths orbiting a red dwarf about 114 light-years away. The star, named LP 890-9, is the second coolest star found that hosts planets. Both the planets are likely temperate, and one of them “… is the second-most favourable habitable-zone terrestrial planet known so far,” according to the paper presenting the results.

Continue reading “Astronomers Have Found Two Temperate Super-Earths Orbiting a Nearby Red Dwarf”

Do Exoplanet Scientists Have Favorite Exoplanets?

Artist rendition of the PSR B1257+12. (Credit: NASA/JPL-Caltech/R. Hurt)

Exoplanets have become quite the sensation over the last decade-plus, with scientists confirming new exoplanets on a regular basis thanks to NASA’s Kepler and TESS missions, along with the James Webb Space Telescope recently examining exoplanet atmospheres, as well. It’s because of these discoveries that exoplanet science has turned into an exciting field of intrigue and wonder, but do the very same scientists who study these wonderful and mysterious worlds have their own favorite exoplanets? As it turns out, four such exoplanet scientists, sometimes referred to as “exoplaneteers”, were kind enough to share their favorites with Universe Today!

Continue reading “Do Exoplanet Scientists Have Favorite Exoplanets?”

What’s the Best Mix of Oceans to Land for a Habitable Planet?

A new study asks what ratio of land to ocean is best for habitability? Image Credit: Reto Stöckli, Render by Robert Simmon. Based on data from the MODIS Science Team

Earth is about 29% land and 71% oceans. How significant is that mix for habitability? What does it tell us about exoplanet habitability?

Continue reading “What’s the Best Mix of Oceans to Land for a Habitable Planet?”

JWST Detects Signs of Active Chemistry and Clouds in the Atmosphere of Exoplanet WASP-39 b

WASP-39 b
This is an illustration (artist’s impression) showing what the exoplanet WASP-39 b could look like, based on current understanding of the planet. Courtesy NASA/JWST.

NASA’s JWST data just keeps on delivering amazing discoveries. Back in July, it observed the exoplanet WASP-39 b and found fingerprints of atoms and molecules and active chemical reactions in its clouds. Now, a team of scientists extends that discovery with a much deeper analysis of the data.

Continue reading “JWST Detects Signs of Active Chemistry and Clouds in the Atmosphere of Exoplanet WASP-39 b”

Searching for Life on Highly Eccentric Exoplanets

Artist’s rendition of a hypothetical highly eccentric exoplanet (Credit: NASA/JPL-Caltech)

When we think about finding life beyond Earth, especially on exoplanets, we immediately want to search for the next Earth, or Earth 2.0. We want an exoplanet that orbits a star firmly in its habitable zone (HZ) with vast oceans of liquid water, and plenty of land to go around. An exoplanet like that most certainly has life, right? But what if we’re looking in the wrong places? What if we find life on exoplanets that don’t possess the aforementioned characteristics, i.e., Earth 2.0?

Continue reading “Searching for Life on Highly Eccentric Exoplanets”

Astronomers Find a “Marshmallow World”: the Lowest Density Gas Giant Ever Discovered

a gas giant orbiting a red dwarf star
A gas giant exoplanet [right] with the density of a marshmallow has been detected in orbit around a cool red dwarf star [left] by the NASA-funded NEID radial-velocity instrument on the 3.5-meter WIYN Telescope at Kitt Peak National Observatory, a Program of NSF’s NOIRLab. The planet, named TOI-3757 b, is the fluffiest gas giant planet ever discovered around this type of star.

Exoplanet discovery space hosts all kinds of interesting “super” worlds. There are super-Earths, super-Neptunes, and, of course, Super-Jupiters. Recently, the WIYN telescope on Kitt Peak in Arizona did a follow-up observation of a gas giant discovered by TESS (the Transiting Exoplanet Survey Satellite). The world is fluffy and weird and it’s orbiting a red giant star. Oddly enough, it shouldn’t even exist. Yet, there it is happily orbiting a star some 580 light-years from Earth.

Continue reading “Astronomers Find a “Marshmallow World”: the Lowest Density Gas Giant Ever Discovered”