Why Can Black Hole Binaries Have Dramatically Different Masses? Multiple Generations of Mergers

On the 12th of April, 2019, the LIGO and Virgo gravitational wave observatories detected the merger of two black holes. Named GW190412, one of the black holes was eight solar masses, while the other was 30 solar masses. On the 14th of August that year, an even more extreme merger was observed, when a 2.5 solar mass object merged with a black hole nearly ten times more massive. These mergers raise fundamental questions about the way black hole mergers happen.

Continue reading “Why Can Black Hole Binaries Have Dramatically Different Masses? Multiple Generations of Mergers”

Supermassive black holes can cloak themselves in a cocoon of dust, making them invisible even when they should be bright quasars

Quasars are the most powerful sources of light in the universe, but sometimes they’re hard to find. A team of astronomers used the Chandra X-ray Space Telescope to find some diamonds in the rough.

Continue reading “Supermassive black holes can cloak themselves in a cocoon of dust, making them invisible even when they should be bright quasars”

A Black Hole Popping Out of a Traversable Wormhole Should Give Off a Very Specific Signal in Gravitational Waves

Gravitational wave astronomy has changed the way we view the cosmos. In only a few years we have observed the collisions of black holes and neutron stars, confirming our theoretical understanding of these strange objects. But as gravitational wave astronomy matures, it will allow us to probe the very nature of space and time itself. While that day is a long way off, it hasn’t stopped the theory folks from dreaming up new discoveries. For example, how it might look if a black hole and a wormhole interact.

Continue reading “A Black Hole Popping Out of a Traversable Wormhole Should Give Off a Very Specific Signal in Gravitational Waves”

There’s a Black Hole With 34 Billion Times the Mass of the Sun, Eating Roughly a Star Every Day

In the 1960s, astronomers began theorizing that there might be black holes in the Universe that are so massive – supermassive black holes (SMBHs) – they could power the nuclei of active galaxies (aka. quasars). A decade later, astronomers discovered that an SMBH existed at the center of the Milky Way (Sagitarrius A*); and by the 1990s, it became clear that most large galaxies in the Universe are likely to have one.

Since that time, astronomers have been hunting for the largest SMBH they can find, in the hopes that can see just how massive these things get! And thanks to new research led by astronomers from the Australian National University, the latest undisputed heavy-weight contender has been found! With roughly 34 billion times the mass of our Sun, this SMBH (J2157) is the fastest-growing black hole and largest quasar observed to date.

Continue reading “There’s a Black Hole With 34 Billion Times the Mass of the Sun, Eating Roughly a Star Every Day”

How an Advanced Civilization Could Exploit a Black Hole for Nearly Limitless Energy

A black hole as a source of energy?

We know black holes as powerful singularities, regions in space time where gravity is so overwhelming that nothing—not even light itself—can escape.

About 50 years ago, British physicist Roger Penrose proposed that black holes could be a source of energy. Now, researchers at the University of Glasgow in Scotland have demonstrated that it may be possible.

Continue reading “How an Advanced Civilization Could Exploit a Black Hole for Nearly Limitless Energy”

Astronomers Just Detected Either the Least Massive Black Hole, or a Strange and Massive Neutron Star

Black holes are the ultimate limit of gravitational collapse. Bring enough mass into a small enough volume, and its own weight will squeeze the mass into oblivion. All that remains is a warped pocket of space that it can trap anything that strays too close, even light.

Continue reading “Astronomers Just Detected Either the Least Massive Black Hole, or a Strange and Massive Neutron Star”

Supermassive Black Holes Grew by Consuming Gas and Entire Stars

Where do they come from, those beguiling singularities that flummox astrophysicists—and the rest of us. Sure, we understand the processes behind stellar mass black holes, and how they form from the gravitational collapse of a star.

But what about the staggering behemoths at the center of galaxies, those supermassive black holes (SMBH) that can grow to be billions of times more massive than our Sun?

How do they get so big?

Continue reading “Supermassive Black Holes Grew by Consuming Gas and Entire Stars”