Black Hole Simulation Solves a Mystery About Their Accretion Disks

Credit: ESA/Hubble, ESO, M. Kornmesser

Black holes are one of the most awesome and mysterious forces in the Universe. Originally predicted by Einstein’s Theory of General Relativity, these points in spacetime are formed when massive stars undergo gravitational collapse at the end of their lives. Despite decades of study and observation, there is still much we don’t know about this phenomenon.

For example, scientists are still largely in the dark about how the matter that falls into orbit around a black hole and is gradually fed onto it (accretion disks) behave. Thanks to a recent study, where an international team of researchers conducted the most detailed simulations of a black hole to date, a number of theoretical predictions regarding accretion disks have finally been validated.

Continue reading “Black Hole Simulation Solves a Mystery About Their Accretion Disks”

There’s a Ring of Cool Gas Wrapped Around the Milky Way’s Supermassive Black Hole

There’s a lot going on at the center of our galaxy. A supermassive black hole named Sagittarius A-Star resides there, drawing material in with its inexorable gravitational attraction. In that mind-bending neighbourhood, where the laws of physics are stretched beyond comprehension, astronomers have detected a ring of cool gas.

Continue reading “There’s a Ring of Cool Gas Wrapped Around the Milky Way’s Supermassive Black Hole”

Is Dark Matter Made of Axions? Black Holes May Reveal the Answer

What is dark matter made of? It’s one of the most perplexing questions of modern astronomy. We know that dark matter is out there, since we can see its obvious gravitational influence on everything from galaxies to the evolution of the entire universe, but we don’t know what it is. Our best guess is that it’s some sort of weird new particle that doesn’t like to talk to normal matter very often (otherwise we would have seen it by now). One possibility is that it’s an exotic hypothetical kind of particle known as an axion, and a team of astronomers are using none other than black holes to try to get a glimpse into this strange new cosmic critter.

Continue reading “Is Dark Matter Made of Axions? Black Holes May Reveal the Answer”

It Looks Like LIGO/Virgo Have Detected a Black Hole Eating a Neutron Star. For the First Time Ever

A new signal detected by LIGO/Virgo may be the so-called ‘holy grail’ of astrophysics: the merger of a neutron star and a black hole. They’ve discovered pairs of black holes merging, and pairs of neutron stars merging, but until now, not a neutron star-black hole pair.

Continue reading “It Looks Like LIGO/Virgo Have Detected a Black Hole Eating a Neutron Star. For the First Time Ever”

Rapidly Spinning Black Hole is Spitting Out Blobs of Plasma

An artist's illustration of the black hole V404 Cygni. Image Credit: ICRAR.

Black holes, those beguiling singularities that sit on the precipice of the known and the unknown, keep surprising us with their behaviour. As organizations like the Event Horizon Telescope have made clear, there’s a lot we don’t know about the holes, and worse than that, we don’t even know how much we don’t know.

Now scientists have observed a new phenomenon that adds to the black hole mystique: a rapidly spinning black hole that ejects massive blobs of plasma.

Continue reading “Rapidly Spinning Black Hole is Spitting Out Blobs of Plasma”

You Could Travel Through a Wormhole, but it’s Slower Than Going Through Space

Artist illustration of a spacecraft passing through a wormhole to a distant galaxy. Image credit: NASA.

Special Relativity. It’s been the bane of space explorers, futurists and science fiction authors since Albert Einstein first proposed it in 1905. For those of us who dream of humans one-day becoming an interstellar species, this scientific fact is like a wet blanket. Luckily, there are a few theoretical concepts that have been proposed that indicate that Faster-Than-Light (FTL) travel might still be possible someday.

A popular example is the idea of a wormhole: a speculative structure that links two distant points in space time that would enable interstellar space travel. Recently, a team of Ivy League scientists conducted a study that indicated how “traversable wormholes” could actually be a reality. The bad news is that their results indicate that these wormholes aren’t exactly shortcuts, and could be the cosmic equivalent of “taking the long way”!

Continue reading “You Could Travel Through a Wormhole, but it’s Slower Than Going Through Space”

It’s Finally here. The First Ever Image of a Black Hole



We have taken the first picture of a black hole.


EHT project director Sheperd S. Doeleman of the Center for Astrophysics | Harvard & Smithsonian.

What was once un-seeable can now be seen. Black holes, those difficult-to-understand singularities that may reside at the center of every galaxy, are becoming seeable. The Event Horizon Telescope (EHT) has revealed the first-ever image of a black hole, and with this image, and all the science behind it, they may help crack open one of the biggest mysteries in the Universe.

Continue reading “It’s Finally here. The First Ever Image of a Black Hole”

Now We Know That Dark Matter Isn’t Primordial Black Holes

For over fifty years, scientists have theorized that roughly 85% of matter in the Universe’s is made up of a mysterious, invisible mass. Since then, multiple observation campaigns have indirectly witnessed the effects that this “Dark Matter” has on the Universe. Unfortunately, all attempts to detect it so far have failed, leading scientists to propose some very interesting theories about its nature.

One such theory was offered by the late and great Stephen Hawking, who proposed that the majority of dark matter may actually be primordial black holes (PBH) smaller than a tenth of a millimeter in diameter. But after putting this theory through its most rigorous test to date, an international team of scientists led from the Kavli Institute for the Physics and Mathematics of the Universe (IPMU) has confirmed that it is not.

Continue reading “Now We Know That Dark Matter Isn’t Primordial Black Holes”

This Star has been Kicked Out of the Milky Way. It Knows What It Did.

Researchers from the University of Michigan confirm that a runaway star was ejected from the Milky Way's disk rather than the galactic core. Image Credit: Kohei Hattori

Every once in a while, the Milky Way ejects a star. The evicted star is typically ejected from the chaotic area at the center of the galaxy, where our Super Massive Black Hole (SMBH) lives. But at least one of them was ejected from the comparatively calm galactic disk, a discovery that has astronomers rethinking this whole star ejection phenomenon.

Continue reading “This Star has been Kicked Out of the Milky Way. It Knows What It Did.”

Using Black Holes to Conquer Space: The Halo Drive!

The idea of one day traveling to another star system and seeing what is there has been the fevered dream of people long before the first rockets and astronauts were sent to space. But despite all the progress we have made since the beginning of the Space Age, interstellar travel remains just that – a fevered dream. While theoretical concepts have been proposed, the issues of cost, travel time and fuel remain highly problematic.

A lot of hopes currently hinge on the use of directed energy and lightsails to push tiny spacecrafts to relativistic speeds. But what if there was a way to make larger spacecraft fast enough to conduct interstellar voyages? According to Prof. David Kipping – the leader of Columbia University’s Cool Worlds lab – future spacecraft could rely on a Halo Drive, which uses the gravitational force of a black hole to reach incredible speeds.

Continue reading “Using Black Holes to Conquer Space: The Halo Drive!”