Astronomers Observe the Rotating Accretion Disk Around the Supermassive Black Hole in M77

During the 1970s, scientists confirmed that radio emissions coming from the center of our galaxy were due to the presence of a Supermassive Black Hole (SMBH). Located about 26,000 light-years from Earth between the Sagittarius and Scorpius constellation, this feature came to be known as Sagittarius A*. Since that time, astronomers have come to understand that most massive galaxies have an SMBH at their center.

What’s more, astronomers have come to learn that black holes in these galaxies are surrounded by massive rotating toruses of dust and gas, which is what accounts for the energy they put out. However, it was only recently that a team of astronomers, using the the Atacama Large Millimeter/submillimeter Array (ALMA), were able to capture an image of the rotating dusty gas torus around the supermassive black hole of M77.

The study which details their findings recently appeared in the Astronomical Journal Letters under the title “ALMA Reveals an Inhomogeneous Compact Rotating Dense Molecular Torus at the NGC 1068 Nucleus“. The study was conducted by a team of Japanese researchers from the National Astronomical Observatory of Japan – led by Masatoshi Imanishi – with assistance from Kagoshima University.

The central region of the spiral galaxy M77. The NASA/ESA Hubble Space Telescope imaged the distribution of stars. ALMA revealed the distribution of gas in the very center of the galaxy. Credit: ALMA (ESO/NAOJ/NRAO)/Imanishi et al./NASA/ESA Hubble Space Telescope and A. van der Hoeven

Like most massive galaxies, M77 has an Active Galactic Nucleus (AGN), where dust and gas are being accreted onto its SMBH, leading to higher than normal luminosity. For some time, astronomers have puzzled over the curious relationship that exists between SMBHs and galaxies. Whereas more massive galaxies have larger SMBHs, host galaxies are still 10 billion times larger than their central black hole.

This naturally raises questions about how two objects of vastly different scales could directly affect each other. As a result, astronomers have sought to study AGN is order to determine how galaxies and black holes co-evolve. For the sake of their study, the team conducted high-resolution observations of the central region of M77, a barred spiral galaxy located about 47 million light years from Earth.

Using ALMA, the team imaged the area around M77’s center and were able to resolve a compact gaseous structure with a radius of 20 light-years. As expected, the team found that the compact structure was rotating around the galaxies central black hole. As Masatoshi Imanishi explained in an ALMA press release:

“To interpret various observational features of AGNs, astronomers have assumed rotating donut-like structures of dusty gas around active supermassive black holes. This is called the ‘unified model’ of AGN. However, the dusty gaseous donut is very tiny in appearance. With the high resolution of ALMA, now we can directly see the structure.”

Motion of gas around the supermassive black hole in the center of M77. The gas moving toward us is shown in blue and that moving away from us is in red. Credit: ALMA (ESO/NAOJ/NRAO), Imanishi et al.

In the past, astronomers have observed the center of M77, but no one has been able to resolve the rotating torus at its center until now. This was made possible thanks to the superior resolution of ALMA, as well as the selection of molecular emissions lines. These emissions lines include hydrogen cyanide (HCN) and formyl ions (HCO+), which emit microwaves only in dense gas, and carbon monoxide – which emits microwaves under a variety of conditions.

The observations of these emission lines confirmed another prediction made by the team, which was that the torus would be very dense. “Previous observations have revealed the east-west elongation of the dusty gaseous torus,” said Imanishi. “The dynamics revealed from our ALMA data agrees exactly with the expected rotational orientation of the torus.”

However, their observations also indicated that the distribution of gas around an SMBH is more complicated that what a simple unified model suggests. According to this model, the rotation of the torus would follow the gravity of the black hole; but what Imanishi and his team found indicated that gas and dust in the torus also exhibit signs of highly random motion.

These could be an indication that the AGN at the center of M77 had a violent history, which could include merging with a small galaxy in the past. In short, the team’s observations indicate that galactic mergers may have a significant impact on how AGNs form and behave. In this respect, their observations of M77s torus are already providing clues as to the galaxy’s history and evolution.

NASA’s Spitzer Space Telescope captured this stunning infrared image of the center of the Milky Way Galaxy, where the black hole Sagitarrius A resides. Credit: NASA/JPL-Caltech

The study of SMBHs, while intensive, is also very challenging. On the one hand, the closest SMBH (Sagitarrius A*) is relatively quiet, with only a small amount of gas accreting onto it. At the same time, it is located at the center of our galaxy, where it is obscured by intervening dust, gas and stars. As such, astronomers are forced to look to other galaxies to study how SMBHs and their galaxies co-exist.

And thanks to decades of study and improvements in instrumentation, scientists are beginning to get a clear glimpse of these mysterious regions for the first time. By being able to study them in detail, astronomers are also gaining valuable insight into how such massive black holes and their ringed structures could coexist with their galaxies over time.

Further Reading: ALMA, arXiv

The First Results From The IllustrisTNG Simulation Of The Universe Has Been Completed, Showing How Our Cosmos Evolved From The Big Bang

The first results of the IllustrisTNG Project have been published in three separate studies, and they’re shedding new light on how black holes shape the cosmos, and how galaxies form and grow. The IllustrisTNG Project bills itself as “The next generation of cosmological hydrodynamical simulations.” The Project is an ongoing series of massive hydrodynamic simulations of our Universe. Its goal is to understand the physical processes that drive the formation of galaxies.

At the heart of IllustriousTNG is a state of the art numerical model of the Universe, running on one of the most powerful supercomputers in the world: the Hazel Hen machine at the High-Performance Computing Center in Stuttgart, Germany. Hazel Hen is Germany’s fastest computer, and the 19th fastest in the world.

The Hazel Hen Supercomputer is based on Intel processors and Cray network technologies. Image: IllustrisTNG

Our current cosmological model suggests that the mass-energy density of the Universe is dominated by dark matter and dark energy. Since we can’t observe either of those things, the only way to test this model is to be able to make precise predictions about the structure of the things we can see, such as stars, diffuse gas, and accreting black holes. These visible things are organized into a cosmic web of sheets, filaments, and voids. Inside these are galaxies, which are the basic units of cosmic structure. To test our ideas about galactic structure, we have to make detailed and realistic simulated galaxies, then compare them to what’s real.

Astrophysicists in the USA and Germany used IllustrisTNG to create their own universe, which could then be studied in detail. IllustrisTNG correlates very strongly with observations of the real Universe, but allows scientists to look at things that are obscured in our own Universe. This has led to some very interesting results so far, and is helping to answer some big questions in cosmology and astrophysics.

How Do Black Holes Affect Galaxies?

Ever since we’ve learned that galaxies host supermassive black holes (SMBHs) at their centers, it’s been widely believed that they have a profound influence on the evolution of galaxies, and possibly on their formation. That’s led to the obvious question: How do these SMBHs influence the galaxies that host them? Illustrious TNG set out to answer this, and the paper by Dr. Dylan Nelson at the Max Planck Institute for Astrophysics shows that “the primary driver of galaxy color transition is supermassive blackhole feedback in its low-accretion state.”

“The only physical entity capable of extinguishing the star formation in our large elliptical galaxies are the supermassive black holes at their centers.” – Dr. Dylan Nelson, Max Planck Institute for Astrophysics,

Galaxies that are still in their star-forming phase shine brightly in the blue light of their young stars. Then something changes and the star formation ends. After that, the galaxy is dominated by older, red stars, and the galaxy joins a graveyard full of “red and dead” galaxies. As Nelson explains, “The only physical entity capable of extinguishing the star formation in our large elliptical galaxies are the supermassive black holes at their centers.” But how do they do that?

Nelson and his colleagues attribute it to supermassive black hole feedback in its low-accretion state. What that means is that as a black hole feeds, it creates a wind, or shock wave, that blows star-forming gas and dust out of the galaxy. This limits the future formation of stars. The existing stars age and turn red, and few new blue stars form.

This is a rendering of gas velocity in a massive galaxy cluster in IllustrisTNG. Black areas are hardly moving, and white areas are moving at greater than 1000km/second. The black areas are calm cosmic filaments, the white areas are near super-massive black holes (SMBHs). The SMBHs are blowing away the gas and preventing star formation. Image: IllustrisTNG

How Do Galaxies Form and How Does Their Structure Develop?

It’s long been thought that large galaxies form when smaller galaxies join up. As the galaxy grows larger, its gravity draws more smaller galaxies into it. During these collisions, galaxies are torn apart. Some stars will be scattered, and will take up residence in a halo around the new, larger galaxy. This should give the newly-created galaxy a faint background glow of stellar light. But this is a prediction, and these pale glows are very hard to observe.

“Our predictions can now be systematically checked by observers.” – Dr. Annalisa Pillepich (Max Planck Institute for Astrophysics)

IllustrisTNG was able to predict more accurately what this glow should look like. This gives astronomers a better idea of what to look for when they try to observe this pale stellar glow in the real Universe. “Our predictions can now be systematically checked by observers,” Dr. Annalisa Pillepich (MPIA) points out, who led a further IllustrisTNG study. “This yields a critical test for the theoretical model of hierarchical galaxy formation.”

A composite image from IllustrisTNG. Panels on the left show galaxy-galaxy interactions and the fine-grained structure of extended stellar halos. Panels on the right show stellar light projections from two massive central galaxies at the present day. It’s easy to see how the light from massive central galaxies overwhelms the light from stellar halos. Image: IllustrisTNG

IllustrisTNG is an on-going series of simulations. So far, there have been three IllustrisTNG runs, each one creating a larger simulation than the previous one. They are TNG 50, TNG 100, and TNG 300. TNG300 is much larger than TNG50 and allows a larger area to be studied which reveals clues about large-scale structure. Though TNG50 is much smaller, it has much more precise detail. It gives us a more detailed look at the structural properties of galaxies and the detailed structure of gas around galaxies. TNG100 is somewhere in the middle.

TNG 50, TNG 100, and TNG 300. Image: IllustrisTNG

IllustrisTNG is not the first cosmological hydrodynamical simulation. Others include Eagle, Horizon-AGN, and IllustrisTNG’s predecessor, Illustris. They have shown how powerful these predictive theoretical models can be. As our computers grow more powerful and our understanding of physics and cosmology grow along with them, these types of simulations will yield greater and more detailed results.

Outflows From Black Holes are Creating New Molecules Where There Should Only be Destruction

During the 1960s, scientists discovered a massive radio source (known as Sagittarius A*) at the center of the Milky Way, which was later revealed to be a Supermassive Black Holes (SMBH). Since then, they have learned that these SMBHs reside at the center of most massive galaxies. The presence of these black holes is also what allows the centers of these galaxies to have a higher than normal luminosity – aka. Active Galactic Nuclei (AGNs).

In the past few years, astronomers have also observed fast molecular outflows emanating from AGNs which left them puzzled. For one, it was a mystery how any particles could survive the heat and energy of a black hole’s outflow. But according to a new study produced by researchers from Northwestern University, these molecules were actually born within the winds themselves. This theory may help explain how stars form in extreme environments.

The study recently appeared in The Monthly Notices of the Royal Astronomical Society under the title “The origin of fast molecular outflows in quasars: molecule formation in AGN-driven galactic winds.” The study was conducted by Lindheimer post-doctoral fellow Alexander J Richings and assistant professor Claude-André Faucher-Giguère from Northwestern University’s Center for Interdisciplinary Research and Exploration in Astrophysics (CIERA).

Artist’s impression of a black hole’s wind sweeping away galactic gas. Credit: ESA

For the sake of their study, Richings developed the first-ever computer code capable of modeling the detailed chemical processes in interstellar gas which are accelerated by a growing SMBH’s radiation. Meanwhile, Claude-André Faucher-Giguère contributed his expertise, having spent his career studying the formation and evolution of galaxies. As Richings explained in a Northwestern press release:

“When a black hole wind sweeps up gas from its host galaxy, the gas is heated to high temperatures, which destroy any existing molecules. By modeling the molecular chemistry in computer simulations of black hole winds, we found that this swept-up gas can subsequently cool and form new molecules.”

The existence of energetic outflows form SMBHs was first confirmed in 2015, when researchers used the ESA’s Herschel Space Observatory and data from the Japanese/US Suzaku satellite to observe the AGN of a galaxy known as IRAS F11119+3257. Such outflows, they determined, are responsible for draining galaxies of their interstellar gas, which has an arresting effect on the formation of new stars and can lead to “red and dead” elliptical galaxies.

This was followed-up in 2017 with observations that indicated that rapidly moving new stars formed in these outflows, something that astronomers previously thought to be impossible because of the extreme conditions present within them. By theorizing that these particles are actually the product of black hole winds, Richings and Faucher-Giguère have managed to address questions raised by these previous observations.

Artist's concept of Sagittarius A, the supermassive black hole at the center of our galaxy. Credit: NASA/JPL
Artist’s concept of Sagittarius A, the supermassive black hole at the center of our galaxy. Credit: NASA/JPL

Essentially, their theory helps explain predictions made in the past, which appeared contradictory at first glance. On the one hand, it upholds the prediction that black hole winds destroy molecules they collide with. However, it also predicts that new molecules are formed within these winds – including hydrogen, carbon monoxide and water – which can give birth to new stars. As Faucher-Giguère explained:

“This is the first time that the molecule formation process has been simulated in full detail, and in our view, it is a very compelling explanation for the observation that molecules are ubiquitous in supermassive black hole winds, which has been one of the major outstanding problems in the field.”

Richings and Faucher-Giguère look forward to the day when their theory can be confirmed by next-generation missions. They predict that new molecules formed by black hole outflows would be brighter in the infrared wavelength than pre-existing molecules. So when the James Webb Space Telescope takes to space in the Spring of 2019, it will be able to map these outflows in detail using its advance IR instruments.

One of the most exciting things about the current era of astronomy is the way new discoveries are shedding light on decades-old mysteries. But when these discoveries lead to theories that offer symmetry to what were once thought to be incongruous pieces of evidence, that’s when things get especially exciting. Basically, it lets us know that we are moving closer to a greater understanding of our Universe!

Further Reading: Northwestern University, MNRAS

A Black Hole is Pushing the Stars Around in this Globular Cluster

Astronomers have been fascinated with globular clusters ever since they were first observed in 17th century. These spherical collections of stars are among the oldest known stellar systems in the Universe, dating back to the early Universe when galaxies were just beginning to grow and evolve. Such clusters orbit the centers of most galaxies, with over 150 known to belong to the Milky Way alone.

One of these clusters is known as NGC 3201, a cluster located about 16,300 light years away in the southern constellation of Vela. Using the ESO’s Very Large Telescope (VLT) at the Paranal Observatory in Chile, a team of astronomers recently studied this cluster and noticed something very interesting. According to the study they released, this cluster appears to have a black hole embedded in it.

The study appeared in the Monthly Notices of the Royal Astronomical Society under the title “A detached stellar-mass black hole candidate in the globular cluster NGC 3201“. The study was led by Benjamin Giesers of the Georg-August-University of Göttingen and included members from Liverpool John Moores University, Queen Mary University of London, the Leiden Observatory, the Institute of Astrophysics and Space Sciences, ETH Zurich, and the Leibniz Institute for Astrophysics Potsdam (AIP).

For the sake of their study, the team relied on the Multi Unit Spectroscopic Explorer (MUSE) instrument on the VLT to observe NGC 3201. This instrument is unique because of the way it allows astronomers to measure the motions of thousands of far away stars simultaneously. In the course of their observations, the team found that one of the cluster’s stars was being flung around at speeds of several hundred kilometers an hour and with a period of 167 days.

As Giesers explained in an ESO press release:

It was orbiting something that was completely invisible, which had a mass more than four times the Sun — this could only be a black hole! The first one found in a globular cluster by directly observing its gravitational pull.

This finding was rather unexpected, and constitutes the first time that astronomers have been able to detect an inactive black hole at the heart of a globular cluster – meaning that it is not currently accreting matter or surrounded by a glowing disc of gas. They were also able to estimate the black hole’s mass by measuring the movements of the star around it and thus extrapolating its enormous gravitational pull.

From its observed properties, the team determined that the rapidly-moving star is about 0.8 times the mass of our Sun and the mass of its black hole counterpart to be around 4.36 times the Sun’s mass. This put’s it in the “stellar-mass black hole” category, which are stars that exceeds the maximum mass allowance of a neutron star, but are smaller than supermassive black holes (SMBHs) – which exist at the centers of most galaxies.

This finding is highly significant, and not just because it was the first time that astronomers have observed a stellar-mass black hole in a globular cluster. In addition, it confirms what scientists have been suspecting for a few years now, thanks to recent radio and x-ray studies of globular clusters and the detection of gravity wave signals. Basically, it indicates that black holes are more common in globular clusters than previously thought.

“Until recently, it was assumed that almost all black holes would disappear from globular clusters after a short time and that systems like this should not even exist!” said Giesers. “But clearly this is not the case – our discovery is the first direct detection of the gravitational effects of a stellar-mass black hole in a globular cluster. This finding helps in understanding the formation of globular clusters and the evolution of black holes and binary systems – vital in the context of understanding gravitational wave sources.”

This find was also significant given that the relationship between black holes and globular clusters remains a mysterious, but highly important one. Due to their high masses, compact volumes, and great ages, astronomers believe that clusters have produced a large number of stellar-mass black holes over the course of the Universe’s history. This discovery could therefore tell us much about the formation of globular clusters, black holes, and the origins of gravitational wave events.

And be sure to enjoy this ESO podcast explaining the recent discovery:

Further Reading: ESO, MNRAS

Astronomers Figure Out How Black Holes Can Blast Out Relativistic Jets of Material Across Light Years of Space

Black holes have been an endless source of fascination ever since Einstein’s Theory of General Relativity predicted their existence. In the past 100 years, the study of black holes has advanced considerably, but the awe and mystery of these objects remains. For instance, scientists have noted that in some cases, black holes have massive jets of charged particles emanating from them that extend for millions of light years.

These “relativistic jets” – so-named because they propel charged particles at a fraction of the speed of light – have puzzled astronomers for years. But thanks to a recent study conducted by an international team of researchers, new insight has been gained into these jets. Consistent with General Relativity, the researchers showed that these jets gradually precess (i.e. change direction) as a result of space-time being dragged into the rotation of the black hole.

Their study, titled “Formation of Precessing Jets by Tilted Black Hole Discs in 3D General Relativistic MHD Simulations“, recently appeared in the Monthly Notices of the Royal Astronomical Society. The team consisted of members from the Anton Pannekoek Institute for Astronomy at the University of Amsterdam and a professor from the Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) at Northwestern University.

For the sake of their study, the team conducted simulations using the Blue Waters supercomputer at the University of Illinois. The simulations they conducted were the first ever to model the behavior of relativistic jets coming from Supermassive Black Holes (SMBHs). With close to a billion computational cells, it was also the highest-resolution simulation of an accreting black hole ever achieved.

As Alexander Tchekhovskoy, an assistant professor of physics and astronomy at Northwestern’s Weinberg College of Arts and Sciences, explained in a recent Northwestern Now press release:

“Understanding how rotating black holes drag the space-time around them and how this process affects what we see through the telescopes remains a crucial, difficult-to-crack puzzle. Fortunately, the breakthroughs in code development and leaps in supercomputer architecture are bringing us ever closer to finding the answers.”

Much like all Supermassive Black Holes, rapidly spinning SMBHs regularly engulf (aka. accrete) matter. However, rapidly spinning black holes are also known for the way they emit energy in the form of relativistic jets. The matter that feeds these black holes forms a rotating disk around them – aka. an accretion disk – which is characterized by hot, energized gas and magnetic field lines.

It is the presence of these field lines that allows black holes to propel energy in the form of these jets. Because these jets are so large, they are easier to study than the black holes themselves. In so doing, astronomers are able to understand how quickly the direction of these jets change, which reveals things about the rotation of the black holes themselves – such as the orientation and size of their rotating disks.

Advanced computer simulations are necessary when it comes to the study of black holes, largely because they are not observable in visible light and are typically very far away. For instance, the closest SMBH to Earth is Sagittarius A*, which is located about 26,000 light-years away at the center of our galaxy. As such, simulations are the only way to determine how a highly complex system like a black hole operates.

In previous simulations, scientists operated under the assumption that black hole disks were aligned. However, most SMBHs have been found to have tilted disks – i.e. the disks rotate around a separate axis than the black hole itself. This study was therefore seminal in that it showed how disks can change direction relative to their black hole, leading to precessing jets that periodically change their direction.

This was previously unknown because of the incredibly amount of computing power that is needed to construct 3-D simulations of the region surrounding a rapidly spinning black hole. With the support of a National Science Foundation (NSF) grant, the team was able to achieve this by using the Blue Waters, one of the largest supercomputers in the world.

Detection of an unusually bright X-Ray flare from Sagittarius A*, a supermassive black hole in the center of the Milky Way galaxy. Credit: NASA/CXC/Stanford/I. Zhuravleva et al.

With this supercomputer at their disposal, the team was able to construct the first black hole simulation code, which they accelerated using graphical processing units (GPUs). Thanks to this combination, the team was able to carry out simulations that had the highest level of resolution ever achieved – i.e. close to a billion computational cells. As Tchekhovskoy explained:

“The high resolution allowed us, for the first time, to ensure that small-scale turbulent disk motions are accurately captured in our models. To our surprise, these motions turned out to be so strong that they caused the disk to fatten up and the disk precession to stop. This suggests that precession can come about in bursts.”

The precession of relativistic jets could explain why light fluctuations have been observed coming from around black holes in the past – which are known as quasi-periodic oscillations (QPOs). These beams, which were first discovered by Michiel van der Klis (one of the co-authors on the study), operate in much the same way as a quasar’s beams, which appear to have a strobing effect.

This study is one of many that is being conducting on rotating black holes around the world, the purpose of which is to gain a better understanding about recent discoveries like gravitational waves, which are caused by the merger of black holes. These studies are also being applied to observations from the Event Horizon Telescope, which captured the first images of Sagittarius A*’s shadow. What they will reveal is sure to excite and amaze, and potentially deepen the mystery of black holes.

In the past century, the study of black holes has advanced considerably – from the purely theoretical, to indirect studies of the effects they have on surrounding matter, to the study of gravitational waves themselves. Perhaps one day, we might actually be able to study them directly or (if it’s not too much to hope for) peer directly inside them!

Further Reading: Northwestern Now, MNRAS

Mysterious Filament is Stretching Down Towards the Milky Way’s Supermassive Black Hole

The core of the Milky Way Galaxy has always been a source of mystery and fascination to astronomers. This is due in part to the fact that our Solar System is embedded within the disk of the Milky Way – the flattened region that extends outwards from the core. This has made seeing into the bulge at the center of our galaxy rather difficult. Nevertheless, what we’ve been able to learn over the years has proven to be immensely interesting.

For instance, in the 1970s, astronomers became aware of the Supermassive Black Hole (SMBH) at the center of our galaxy, known as Sagittarius A* (Sgr A*). In 2016, astronomers also noticed a curved filament that appeared to be extending from Sgr A*. Using a pioneering technique, a team of astronomers from the Harvard-Smithsonian Center for Astrophysics (CfA) recently produced the highest-quality images of this structure to date.

The study which details their findings, titled “A Nonthermal Radio Filament Connected to the Galactic Black Hole?“, recently appeared in The Astrophysical Journal Letters. In it, the team describes how they used the National Radio Astronomy Observatory’s (NRAO) Very Large Array to investigate the non-thermal radio filament (NTF) near Sagittarius A* – now known as the Sgr A West Filament (SgrAWF).

Detection of an unusually bright X-Ray flare from Sagittarius A*, a supermassive black hole in the center of the Milky Way galaxy. Credit: NASA/CXC/Stanford/I. Zhuravleva et al.

As Mark Morris – a professor of astronomy at the UCLA and the lead authority the study – explained in a CfA press release:

“With our improved image, we can now follow this filament much closer to the Galaxy’s central black hole, and it is now close enough to indicate to us that it must originate there. However, we still have more work to do to find out what the true nature of this filament is.”

After examining the filament, the research team came up with three possible explanations for its existence. The first is that the filament is the result of inflowing gas, which would produce a rotating, vertical tower of magnetic field as it approaches and threads Sgr A*’s event horizon. Within this tower, particles would produce radio emissions as they are accelerated and spiral in around magnetic field lines extending from the black hole.

The second possibility is that the filament is a theoretical object known as a cosmic string. These are basically long, extremely thin cosmic structures that carry mass and electric currents that are hypothesized to migrate from the centers of galaxies. In this case, the string could have been captured by Sgr A* once it came too close and a portion crossed its event horizon.

The third and final possibility is that there is no real association between the filament and Sgr A* and the positioning and direction it has shown is merely coincidental. This would imply that there are many such filaments in the Universe and this one just happened to be found near the center of our galaxy. However, the team is confident that such a coincidence is highly unlikely.

Labelled image of the center of our galaxy, showing the mysterious radio filament & the supermassive black hole Sagittarius A* (Sgr A*). Credit: NSF/VLA/UCLA/M. Morris et al.

As Jun-Hui Zhao of the Harvard-Smithsonian Center for Astrophysics in Cambridge, and a co-author on the paper, said:

“Part of the thrill of science is stumbling across a mystery that is not easy to solve. While we don’t have the answer yet, the path to finding it is fascinating. This result is motivating astronomers to build next generation radio telescopes with cutting edge technology.”

All of these scenarios are currently being investigated, and each poses its own share of implications. If the first possibility is true – in which the filament is caused by particles being ejected by Sgr A* – then astronomers would be able to gleam vital information about how magnetic fields operate in such an environment. In short, it could show that near an SMBH, magnetic fields are orderly rather than chaotic.

This could be proven by examining particles farther away from Sgr A* to see if they are less energetic than those that are closer to it. The second possibility, the cosmic string theory, could be tested by conducting follow-up observations with the VLA to determine if the position of the filament is shifting and its particles are moving at a fraction of the speed of light.

If the latter should prove to be the case, it would constitute the first evidence that theoretical cosmic strings actually exists. It would also allow astronomers to conduct further tests of General Relativity, examining how gravity works under such conditions and how space-time is affected. The team also noted that, even if the filament is not physically connected to Sgr A*, the bend in the filament is still rather telling.

In short, the bend appears to be coincide with a shock wave, the kind that would be caused by an exploding star. This could mean that one of the massive stars which surrounds Sgr A* exploded in proximity to the filament in the past, producing the necessary shock wave that altered the course of the inflowing gas and its magnetic field. All of these mysteries will be the subject of follow-up surveys conducted with the VLA.

As co-author Miller Goss from the National Radio Astronomy Observatory in New Mexico (and a co-author on the study) said, “We will keep hunting until we have a solid explanation for this object. And we are aiming to next produce even better, more revealing images.”

Further Reading: CfA, AJL

Kilonova Neutron Star Collision Probably Left Behind a Black Hole

In February of 2016, scientists from the Laser Interferometer Gravitational-Wave Observatory (LIGO) announced the first-ever detection of gravitational waves. A little over a century after they were first predicted by Einstein’s Theory of General Relativity, we finally had proof that this phenomenon existed. In August of 2017, another major breakthrough occurred when LIGO detected waves that were believed to be caused by a neutron star merger.

Shortly thereafter, scientists at LIGO, Advanced Virgo, and the Fermi Gamma-ray Space Telescope were able to determine where in the sky the neutron star merger occurred. While many studies have focused on the by-products of this merger, a new study by researchers from Trinity University, the University of Texas at Austin and Eureka Scientific, has chosen to focus on the remnant, which they claim is likely a black hole.

For the sake of their study, which recently appeared online under the title “GW170817 Most Likely Made a Black Hole“, the team consulted data from the Chandra X-ray Observatory to examine what resulted of the supernova merger. This data was obtained during Director’s Discretionary Time observations that were made on December 3rd and 6th, 2017, some 108 days after the merger.

This data showed a light-curve increase in the X-ray band which was compatible to the radio flux increase that was reported by a previous study conducted by the same team. These combined results suggest that radio and X-ray emissions were being produced at the same source, and that the rising light-curve that followed the merger was likely due to an increase in accelerated charged particles in the external shock – the region where an outflow of gas interacts with the interstellar medium.

As they indicate in their study, this could either be explained as the result of a more massive neutron star being formed from the merger, or a black hole:

“The merger of two neutron stars with mass 1.48 ± 0.12 M and 1.26 ± 0.1 M — where the merged object has a mass of 2.74 +0.04-0.01 M… could result in either a neutron star or a black hole. There might also be a debris disk that gets accreted onto the central object over a period of time, and which could be source of keV X-rays.”

The team also ruled out various possibilities of what could account for this rise in X-ray luminosity. Basically, they concluded that the X-ray photons were not coming from a debris disk, which would have been left over from the merger of the two neutron stars. They also deduced that they would not be produced by a relativistic jet spewing from the remnant, since the flux would be much lower after 102 days.

 

Collisions of neutron stars produce powerful gamma-ray bursts – and heavy elements like gold. Credit: Dana Berry, SkyWorks Digital, Inc.

All of this indicated that the remnant was more likely to be a black hole than a hyper-massive neutron star. As they explained:

“We show next that if the merged object were a hyper-massive neutron star endowed with a strong magnetic field, then the X-ray luminosity associated with the dipole radiation would be larger than the observed luminosity 10 days after the event, but much smaller than the observed flux at t ~ 100 days. This argues against the formation of a hyper-massive neutron star in this merger.”

Last, but not least, they considered the X-ray and radio emissions that were present roughly 100 days after the merger. These, they claim, are best explained by continued emissions coming from the merger-induced shock (and the not remnant itself) since these emissions would continue to propagate in the interstellar medium around the remnant. Combined with early X-ray data, this all points towards GW170817 now being a black hole.

The first-ever detection of gravitational waves signaled the dawn of a new era in astronomical research. Since that time, observatories like LIGO, Advanced Virgo, and GEO 600 have also benefited from information-sharing and new studies that have indicated that mergers are more common than previously thought, and that gravity waves could be used to probe the interior of supernovae.

With this latest study, scientists have learned that they are not only able to detect the waves caused by black hole mergers, but even the creation thereof. At the same time, it shows how the study of the Universe is growing. Not only is astronomy advancing to the point where we are able to study more and more of the visible Universe, but the invisible Universe as well.

Further Reading: LIGO, arXiv

Scientist Find Treasure Trove of Giant Black Hole Pairs

In February 2016, LIGO detected gravity waves for the first time. As this artist's illustration depicts, the gravitational waves were created by merging black holes. The third detection just announced was also created when two black holes merged. Credit: LIGO/A. Simonnet.

For decades, astronomers have known that Supermassive Black Holes (SMBHs) reside at the center of most massive galaxies. These black holes, which range from being hundreds of thousands to billions of Solar masses, exert a powerful influence on surrounding matter and are believed to be the cause of Active Galactic Nuclei (AGN). For as long as astronomers have known about them, they have sought to understand how SMBHs form and evolve.

In two recently published studies, two international teams of researchers report on the discovery of five newly-discovered black hole pairs at the centers of distant galaxies. This discovery could help astronomers shed new light on how SMBHs form and grow over time, not to mention how black hole mergers produce the strongest gravitational waves in the Universe.

The first four dual black hole candidates were reported in a study titled “Buried AGNs in Advanced Mergers: Mid-Infrared Color Selection as a Dual AGN Finder“, which was led by Shobita Satyapal, a professor of astrophysics at George Mason University. This study was accepted for publication in The Astrophysical Journal and recently appeared online.

Optical and x-ray data on two of the new black hole pairs discovered. Credit: NASA/CXC/Univ. of Victoria/S.Ellison et al./George Mason Univ./S.Satyapal et al./SDSS

The second study, which reported the fifth dual black hole candidate, was led by Sarah Ellison – an astrophysics professor at the University of Victoria. It was recently published in the Monthly Notices of the Royal Astronomical Society under the title “Discovery of a Dual Active Galactic Nucleus with ~8 kpc Separation. The discovery of these five black hole pairs was very fortuitous, given that pairs are a very rare find.

As Shobita Satyapal explained in a Chandra press statement:

“Astronomers find single supermassive black holes all over the universe. But even though we’ve predicted they grow rapidly when they are interacting, growing dual supermassive black holes have been difficult to find.

The black hole pairs were discovered by combining data from a number of different ground-based and space-based instruments. This included optical data from the Sloan Digital Sky Survey (SDSS) and the ground-based Large Binocular Telescope (LBT) in Arizona with near-infrared data from the Wide-Field Infrared Survey Explorer (WISE) and x-ray data from NASA’s Chandra X-ray Observatory.

For the sake of their studies, Satyapal, Ellison, and their respective teams sought to detect dual AGNs, which are believed to be a consequence of galactic mergers. They began by consulting optical data from the SDSS to identify galaxies that appeared to be in the process of merging. Data from the all-sky WISE survey was then used to identify those galaxies that displayed the most powerful AGNs.

Illustration of a pair of black holes. Credit: NASA/CXC/A.Hobart

They then consulted data from the Chandra’s Advanced CCD Imaging Spectrometer (ACIS) and the LBT to identify seven galaxies that appeared to be in an advanced stage of merger. The study led by Ellison also relied on optical data provided by the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey to pinpoint one of the new black hole pairs.

From the combined data, they found that five out of the seven merging galaxies hosted possible dual AGNs, which were separated by less than 10 kiloparsecs (over 30,000 light years). This was evidenced by the infrared data provided by WISE, which was consistent with what is predicated of rapidly growing supermassive black holes.

In addition, the Chandra data showed closely-separated pairs of x-ray sources, which is also consistent with black holes that have matter slowly being accreted onto them. This infrared and x-ray data also suggested that the supermassive black holes are buried in large amounts of dust and gas. As Ellison indicated, these findings were the result of painstaking work that consisted of sorting through multiple wavelengths of data:

“Our work shows that combining the infrared selection with X-ray follow-up is a very effective way to find these black hole pairs. X-rays and infrared radiation are able to penetrate the obscuring clouds of gas and dust surrounding these black hole pairs, and Chandra’s sharp vision is needed to separate them”.

Artist’s impression of binary black hole system in the process of merging. Credit: Bohn et al.

Before this study, less than ten pairs of growing black holes had been confirmed based on X-ray studies, and these were mostly by chance. This latest work, which detected five black hole pairs using combined data, was therefore both fortunate and significant. Aside from bolstering the hypothesis that supermassive black holes form from the merger of smaller black holes, these studies also have serious implications for gravitational wave research.

“It is important to understand how common supermassive black hole pairs are, to help in predicting the signals for gravitational wave observatories,” said Satyapa. “With experiments already in place and future ones coming online, this is an exciting time to be researching merging black holes. We are in the early stages of a new era in exploring the universe.”

Since 2016, a total of four instances of gravitational waves have been detected by instruments like the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the VIRGO Observatory. However, these detections were the result of black hole mergers where the black holes were all smaller and less massive  – between eight and 36 Solar masses.

Supermassive Black Holes, on the other hand, are much more massive and will likely produce a much larger gravitational wave signature as they continue to draw closer together. And in a few hundred million years, when these pairs eventually do merge, the resulting energy produced by mass being converted into gravitational waves will be incredible.

Artist’s conception of two merging black holes, similar to those detected by LIGO on January 4th, 2017. Credit: LIGO/Caltech

At present, detectors like LIGO and Virgo are not able to detect the gravitational waves created by Supermassive Black Hole pairs. This work is being done by arrays like the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), which relies on high-precision millisecond pulsars to measure the influence of gravitational waves on space-time.

The proposed Laser Interferometer Space Antenna (LISA), which will be the first dedicated space-based gravitational wave detector, is also expected to help in the search. In the meantime, gravitational wave research has already benefited immensely from collaborative efforts like the one that exists between Advanced LIGO and Advanced Virgo.

In the future, scientists also anticipate that they will be able to study the interiors of supernovae through gravitational wave research. This is likely to reveal a great deal about the mechanisms behind black hole formation. Between all of these ongoing efforts and future developments, we can expect to “hear” a great deal more of the Universe and the most powerful forces at work within it.

Be sure to check out this animation that shows what the eventual merger of two of these black hole pairs will look like, courtesy of the Chandra X-ray Observatory:

Further Reading: Chandra HarvardarXiv, MNRAS

Supermassive Black Holes or Their Galaxies? Which Came First?

Which Came First, Supermassive Black Holes of their Galaxies?

There’s a supermassive black hole at the center of almost every galaxy in the Universe. How did they get there? What’s the relationship between these monster black holes and the galaxies that surround them?

Every time astronomers look farther out in the Universe, they discover new mysteries. These mysteries require all new tools and techniques to understand. These mysteries lead to more mysteries. What I’m saying is that it’s mystery turtles all the way down.

One of the most fascinating is the discovery of quasars, understanding what they are, and the unveiling of an even deeper mystery, where do they come from?

As always, I’m getting ahead of myself, so first, let’s go back and talk about the discovery of quasars.

Molecular clouds scattered by an intermediate black hole show very wide velocity dispersion in this artist’s impression. This scenario well explains the observational features of a peculiar molecular cloud CO-0.40-0.22. Credit: Keio University

Back in the 1950s, astronomers scanned the skies using radio telescopes, and found a class of bizarre objects in the distant Universe. They were very bright, and incredibly far away; hundreds of millions or even billion of light-years away. The first ones were discovered in the radio spectrum, but over time, astronomers found even more blazing in the visible spectrum.

The astronomer Hong-Yee Chiu coined the term “quasar”, which stood for quasi-stellar object. They were like stars, shining from a single point source, but they clearly weren’t stars, blazing with more radiation than an entire galaxy.

Over the decades, astronomers puzzled out the nature of quasars, learning that they were actually black holes, actively feeding and blasting out radiation, visible billions of light-years away.

But they weren’t the stellar mass black holes, which were known to be from the death of giant stars. These were supermassive black holes, with millions or even billions of times the mass of the Sun.

As far back as the 1970s, astronomers considered the possibility that there might be these supermassive black holes at the heart of many other galaxies, even the Milky Way.

The Whirlpool Galaxy (Spiral Galaxy M51, NGC 5194), a classic spiral galaxy located in the Canes Venatici constellation, and its companion NGC 5195. Credit: NASA/ESA

In 1974, astronomers discovered a radio source at the center of the Milky Way emitting radiation. It was titled Sagittarius A*, with an asterisk that stands for “exciting”, well, in the “excited atoms” perspective.

This would match the emissions of a supermassive black hole that wasn’t actively feeding on material. Our own galaxy could have been a quasar in the past, or in the future, but right now, the black hole was mostly silent, apart from this subtle radiation.

Astronomers needed to be certain, so they performed a detailed survey of the very center of the Milky Way in the infrared spectrum, which allowed them to see through the gas and dust that obscures the core in visible light.

They discovered a group of stars orbiting Sagittarius A-star, like comets orbiting the Sun. Only a black hole with millions of times the mass of the Sun could provide the kind of gravitational anchor to whip these stars around in such bizarre orbits.

Further surveys found a supermassive black hole at the heart of the Andromeda Galaxy, in fact, it appears as if these monsters are at the center of almost every galaxy in the Universe.

But how did they form? Where did they come from? Did the galaxy form first, and cause the black hole to form at the middle, or did the black hole form, and build up a galaxy around them?

Until recently, this was actually still one of the big unsolved mysteries in astronomy. That said, astronomers have done plenty of research, using more and more sensitive observatories, worked out their theories, and now they’re gathering evidence to help get to the bottom of this mystery.

Astronomers have developed two models for how the large scale structure of the Universe came together: top down and bottom up.

In the top down model, an entire galactic supercluster formed all at once out of a huge cloud of primordial hydrogen left over from the Big Bang. A supercluster’s worth of stars.

As the cloud came together it, it spun up, kicking out smaller spirals and dwarf galaxies. These could have combined later on to form the more complex structure we see today. The supermassive black holes would have formed as the dense cores of these galaxies as they came together.

Hubble image of Messier 54, a globular cluster located in the Sagittarius Dwarf Galaxy. Credit: ESA/Hubble & NASA

If you want to wrap your mind around this, think of the stellar nursery that formed our Sun and a bunch of other stars. Imagine a single cloud of gas and dust forming multiple stars systems within it. Over time, the stars matured and drifted away from each other.

That’s top down. One big event that leads to the structure we see today.

In the bottom up model, pockets of gas and dust collected together into larger and larger masses, eventually forming dwarf galaxies, and even the clusters and superclusters we see today. The supermassive black holes at the heart of galaxies were grown from collisions and mergers between black holes over eons.

In fact, this is actually how astronomers think the planets in the Solar System formed. By pieces of dust attracting one another into larger and larger grains until the planet-sized objects formed over millions of years.

Bottom up, small parts coming together.

Shortly after the Big Bang, the entire Universe was incredibly dense. But it wasn’t the same density everywhere. Tiny quantum fluctuations in density at the beginning evolved over billions of years of expansion into the galactic superclusters we see today.

Colliding galaxies can force the supermassive black holes in their cores together (NCSA)

I want to stop and let this sink into your brain for a second. There were microscopic variations in density in the early Universe. And these variations became the structures hundreds of millions of light-years across we see today.

Imagine the two forces at play as the expansion of the Universe happened. On the one hand, you’ve got the mutual gravity of the particles pulling one another together. And on the other hand, you’ve got the expansion of the Universe separating the particles from one another. The size of the galaxies, clusters and superclusters were decided by the balance point of those opposing forces.

If small pieces came together, then you’d get that bottom up formation. If large pieces came together, you’d get that top down formation.

When astronomers look out into the Universe at the largest scales, they observe clusters and superclusters as far as they can see – which supports the top down model.

On the other hand, observations show that the first stars formed just a few hundred million years after the Big Bang, which supports bottom up.

So the answer is both?

No, the most modern observations give the edge to the bottom up processes.

The key is that gravity moves at the speed of light, which means that the gravitational interactions between particles spreading away from each other needed to catch up, going the speed of light.

In other words, you wouldn’t get a supercluster’s worth of material coming together, only a star’s worth of material. But these first stars were made of pure hydrogen and helium, and could grow much more massive than the stars we have today. They would live fast and die in supernova explosions, creating much more massive black holes than we get today.

This illustration shows the final stages in the life of a supermassive star that fails to explode as a supernova, but instead implodes to form a black hole. Credit: NASA/ESA/P. Jeffries (STScI)

The first protogalaxies came together, collecting together these first monster black holes and the massive stars surrounding them. And then, over millions and billions of years, these black holes merged again and again, accumulating millions and even billions of times the mass of the Sun. This was how we got the modern galaxies we see today.

There was a recent observation that supports this conclusion. Earlier this year, astronomers announced the discovery of supermassive black holes at the center of relatively tiny galaxies. In our own Milky Way, the supermassive black hole is 4.1 million times the mass of the Sun, but accounts for only .01% of the galaxy’s total mass.

But astronomers from the University of Utah found two ultra compact galaxies with black holes of 4.4 million and 5.8 million times the mass of the Sun respectively. And yet, the black holes account for 13 and 18 percent of the mass of their host galaxies.

The thinking is that these galaxies were once normal, but collided with other galaxies earlier on in the history of the Universe, were stripped of their stars and then were spat out to roam the cosmos.

They’re the victims of those early merging events, evidence of the carnage that happened in the early Universe when the mergers were happening.

We always talk about the unsolved mysteries in the Universe, but this is one that astronomers are starting to puzzle out.

It seems most likely that the structure of the Universe we see today formed bottom up. The first stars came together into protogalaxies, dying as supernova to form the first black holes. The structure of the Universe we see today is the end result of billions of years of formation and destruction. With the supermassive black holes coming together over time.

Once telescopes like James Webb get to work, we should be able to see these pieces coming together, at the very edge of the observable Universe.

Another Monster Black Hole Found in the Milky Way

At the center of the Milky Way Galaxy resides the Supermassive Black Hole (SMBH) known as Sagittarius A*. This tremendous black hole measures an estimated 44 million km in diameter, and has the mass of over 4 million Suns. For decades, astronomers have understood that most larger galaxies have an SMBH at their core, and that these range from hundreds of thousands to billions of Solar Masses.

However, new research performed by a team of researchers from Keio University, Japan, has made a startling find. According to their study, the team found evidence of a mid-sized black hole in a gas cluster near the center of the Milky Way Galaxy. This unexpected find could offer clues as to how SMBHs form, which is something that astronomers have been puzzling over for some time.

The study, titled “Millimetre-wave Emission from an Intermediate-mass Black Hole Candidate in the Milky Way“, recently appeared in the journal Nature Astronomy. Led by Tomoharu Oka, a researcher from the Department of Physics and the School of Fundamental Science and Technology at Keio University, the team studied CO–0.40–0.22, a high-velocity compact gas cloud near the center of our galaxy.

This artist’s concept shows a galaxy with a supermassive black hole at its core. The black hole is shooting out jets of radio waves.Image credit: NASA/JPL-Caltech

This compact dust cloud, which has been a source of fascination to astronomers for years, measures over 1000 AU in diameter and is located about 200 light-years from the center of our galaxy. The reason for this interest has to do with the fact that gases in this cloud – which include hydrogen cyanide and carbon monoxide – move at vastly different speeds, which is something unusual for a cloud of interstellar gases.

In the hopes of better understanding this strange behavior, the team originally observed CO–0.40–0.22 using the 45-meter radio telescope at the Nobeyama Radio Observatory in Japan. This began in January of 2016, when the team noticed that the cloud had an elliptical shape that consisted of two components. These included a compact but low density component with varying velocities, and a dense component (10 light years long) with little variation.

After conducting their initial observations, the team then followed up with observations from the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. These confirmed the structure of the cloud and the variations in speed that seemed to accord with density. In addition, they observed the presence of radio waves (similar to those generated by Sagittarius A*) next to the dense region. As they state in their study:

“Recently, we discovered a peculiar molecular cloud, CO–0.40–0.22, with an extremely broad velocity width, near the center of our Milky Way galaxy. Based on the careful analysis of gas kinematics, we concluded that a compact object with a mass of about 105 [Solar Masses] is lurking in this cloud.”

Change image showing the area around Sgr A*, where low, medium, and high-energy X-rays are red, green, and blue, respectively. The inset box shows X-ray flares from the region close to Sgr A*. NASA: NASA/SAO/CXC

The team also ran a series of computer models to account for these strange behaviors, which indicated that the most likely cause was a black hole. Given its mass – 100,000 Solar Masses, or roughly 500 times smaller than that of Sagittarius A* – this meant that the black hole was intermediate in size. If confirmed, this discovery will constitute the second-largest black hole to be discovered within the Milky Way.

This represents something of a first for astronomers, since the vast majority of black holes discovered to date have been either small or massive. Studies that have sought to locate Intermediate Black Holes (IMBHs), on the other hand, have found very little evidence of them. Moreover, these findings could account for how SMBHs form at the center of larger galaxies.

In the past, astronomers have conjectured that SMBHs are formed by the merger of smaller black holes, which implied the existence of intermediate ones. As such, the discovery of an IMBH would constitute the first piece of evidence for this hypothesis. As Brooke Simmons, a professor at the University of California in San Diego, explained in an interview with The Guardian:

“We know that smaller black holes form when some stars die, which makes them fairly common. We think some of those black holes are the seeds from which the much larger supermassive black holes grow to at least a million times more massive. That growth should happen in part by mergers with other black holes and in part by accretion of material from the part of the galaxy that surrounds the black hole.

“Astrophysicists have been collecting observational evidence for both stellar mass black holes and supermassive black holes for decades, but even though we think the largest ones grow from the smallest ones, we’ve never really had clear evidence for a black hole with a mass in between those extremes.”

Artist’s impression of two merging black holes, which has been theorized to be a source of gravitational waves. Credit: Bohn, Throwe, Hébert, Henriksson, Bunandar, Taylor, Scheel/SXS

Further studies will be needed to confirm the presence of an IMBH at the center of CO–0.40–0.22. Assuming they succeed, we can expect that astrophyiscists will be monitoring it for some time to determine how it formed, and what it’s ultimate fate will be. For instance, it is possible that it is slowly drifting towards Sagittarius A* and will eventually merge with it, thus creating an even more massive SMBH at the center of our galaxy!

Assuming human beings are around to detect that merger, its fair to say that it won’t go unnoticed. The gravitational waves alone are sure to be impressive!

Further Reading: Nature Astronomy