Confirmed: Hayabusa Nabbed Asteroid Particles

An electron micrograph image of the edge of a special Teflon spatula that scraped the interior surfaces of Hayabusa's sample return capsule. Credit: JAXA

[/caption]

The Japan Aerospace Exploration Agency (JAXA) has confirmed that the tiny particles inside the Hayabusa spacecraft’s sample return container are in fact from the asteroid Itokawa. Scientists examined the particles to determine if the probe successfully captured and brought back anything from the asteroid, and in a press release said “about 1,500 grains were identified as rocky particles, and most were determined to be of extraterrestrial origin, and definitely from Asteroid Itokawa.”

These are the first samples from an asteroid ever returned to Earth; the only other extraterrestrial samples brought back to Earth came from the Apollo missions to the Moon. See correction, below.

Previously, JAXA said that although particles were inside the container, it wasn’t clear if they were from the asteroid or if they could be of terrestrial origin (dust from Earth that could have been inside the container).

The particles samples were collected from the chamber by a specially shaped Teflon spatula and examined with a scanning electron microscope. There were two chambers inside the container, and from the press release (in Japanese) it appears all the particles were found in one chamber, Chamber A.

Most of the particles are extremely small, about 10 microns in size and require special handling and equipment. Unfortunately they aren’t the “peanut-sized” chunks of rock that the mission originally hoped to capture. This will make analyzing the particles difficult, but not impossible.

Hayabusa's sample return cannister and parachute on the ground in the Australian outback. Credit: JAXA

During the seven-year round trip journey, Hayabusa arrived at Itokawa in November, 2005. The mechanism that was intended to capture the samples apparently failed, but scientists were hopeful that at least some dust had made its way into the return canister. After a circuitous and troubled-filled return trip home, the sample return capsule was ejected and landed in Australia in June of this year.

Here are the other successful sample return missions:
Apollo Moon missions (1969-1972)
Soviet Union’s Luna 16 (1970) returned 101 grams of lunar soil
Luna 20 (1974) returned 30 grams
Luna 24 (1976) returned 170.1 grams.
The Orbital Debris Collection (ODC) experiment, deployed on the Mir space station for 18 months during 1996–1997, used aerogel to capture interplanetary dust particles in orbit.
Genesis (2001-2004) captured and returned molecules collected from the solar wind. It crashed in the Utah desert, but samples were able to be retreived.
Stardust (1999-2006) collected particles from the tail of a comet, as well as a few interstellar dust grains.

Source: JAXA

Calculate the Effect of an Asteroid Impact on Earth

Impact Earth website

[/caption]

A 20-km asteroid has just been predicted to hit Earth and you want to know if a. You should run for it, b. You should call Bruce Willis, or c. You can rest easy because your part of the world won’t be affected. All you have to do is input the parameters of the asteroid on the recently updated “Impact Earth” website, and you’ll find out everything about what an impactor will do to Earth, including an estimate of the size of the crater, how far away you’ll need to be in order to avoid being affected by the impact (and if that is possible), tsunami wave height, and other details of the subsequent disaster. The fun part is, you can simulate the destruction of Earth multiple times, without hurting anyone.

The original Impact Earth website was created in 2002 for use by NASA and homeland security. The new version, built in a collaboration between Purdue University and Imperial College London, is more user-friendly for the general public, as well as providing more visual details of an impact. Besides being rather fun to play around with, the website is highly educational about what a various sized impacts would do Earth, depending on if it hit ground or water.

Go play around with it.

Mitigating Asteroid Threats Will Take Global Action

Computer generated simulation of an asteroid strike on the Earth. Credit: Don Davis/AFP/Getty Images

[/caption]

During the past 24 hours, the Earth has been hit by about a million small meteoroids – most of which burned up in the atmosphere as shooting stars. This happens every day. And occasionally – once every 10,000 years or so — a really big asteroid (1 km in diameter or larger) comes along and smacks Earth with an extinction-level impact. That idea might cause some of us to lose some sleep. But in between are other asteroid hits that occur every 200-300 years where a medium-sized chunk of space rock intersects with Earth’s orbit, producing a Tunguska-like event, or worse.

“Those are the objects we are concerned with,” said former Apollo astronaut Rusty Schweickart, speaking at a 3-day workshop in Darmstadt, Germany which focused on plans and recommendations for global coordination and response to an asteroid threat. “We need to take action now to bring the world together and recognize this as a global threat so that we can make a cooperative international decision to act to extend the survival of life on Earth.”

There are likely about one million Near Earth Objects out there that could do substantial damage if one hit the Earth. This isn’t anything new – Earth has been in this same environment for billions years.

“What’s new is that we have now opened our eyes via telescopes and are seeing something flying by our heads, so to speak,” said Schweickart during a media event at the workshop. “When you see something flying by your head, you duck. It turns out we have the capability of ducking and causing these objects to miss us. Because we now know about this threat and because we can in fact prevent an impact, we then have a moral obligation to do so.”

Former astronaut Tom Jones, who also attended the workshop, told Universe Today that NASA hopes to find all the 500 meter objects within a few decades, “and thus through action be able to prevent an impact from that large an object, removing it from the overall asteroid hazard. Smaller objects are much more numerous (the approximately million NEOs mentioned above) and can cause city-size damage. We’ll have to search diligently for those in the coming decade and it’ll be several decades before we find those hundreds of thousands of 30-meter sized -subTunguskas.”

Schweickart discussed in a recent Universe Today article that we do possess the technology to move asteroids or change their orbits, and that this technology does need to be tested, and tested soon. But since an impact event could affect the entire world, the decisions on policies and international agreements about asteroid mitigation could actually pose a bigger challenge in dealing with an asteroid threat than putting the technology together.

“Bureaucracy is the most likely reason we will be hit with an asteroid in the future, not the technology,” said Schweickart. “That is an audacious statement to make, but if we can get past that and do our jobs right we should never be hit in the future by an asteroid that could threaten life on Earth. And it’s going to be a heck of a challenge.”

The Mission Planning and Operations Group (MPOG) workshop included astronauts and space scientists and was the latest in a series of workshop designed to offer suggestions to the UN Committee on the Peaceful Uses of Outer Space. Included were representatives from NASA, ESA, the Secure World Foundation and the Association of Space Explorers. They are working on defining future planning tasks and studies for the Group that will later be merged with findings of other experts to create a final report to the UN committee. This report will recommend how to react to an impact threat.

But there are issues such as, how changing an asteroid’s orbit could make it miss one area on Earth and instead hit another area.

“The issue of NEOs is an issue that the United nations has been considering for 10 years or so,” said Sergio Camacho, representing the UN Committee. “The reason it has to go through the UN is that when we make a decision, whatever action is taken might affect others and put them at risk where they are not at risk at the beginning. That can’t be a unilateral decision, and we need to pool the resources of space agencies in order to address the problem. It will be within the framework of the UN that we will be able to master this cooperation.”

Schweickart and the Association of Space Explorers, have been working on this issue for over 9 years and are just now beginning to see a little headway in the bureaucratic process. Everyone at the workshop agreed that political decisions and political awareness is something that has to be taken seriously.

“Two weeks ago a small object passed in between the Earth and the Moon,” said Schweickart,“ and on Halloween an object half a kilometer in diameter Is going to pass within five lunar distances of Earth — in terms of astronomical distances, that is very close. These things are happening, but I hope we areable to act soon and act responsibly without having to have a reminder” – meaning the wake-up call of an actual impact and not being prepared for it.

For more information:

The MPOG workshop (where you can watch the press conference)

Association of Space Explorers,

Graphic Shows Biggest and Closest Near Earth Objects (and it’s not scary)

Near Earth Objects graphic, created by Zachary Vabolis. Used by permission.

[/caption]

Just for fun, graphic design student Zachary Vabolis created this fantastic graphic showing the closest and biggest Near Earth Objects. However, Vabolis wants to make clear that the information represented here is not meant to portray that the end of the world is nigh. His image has appeared on several websites recently, and some of the headlines have included words such as “doomsday,” etc. But, that’s not what he intended.

“I’m not sure if anyone who has seen my graphic is reading more into it than I intended,” Vabolis told Universe Today, “but I wanted to state that I did not create this graphic to scare people. In fact if you look at the information it contains, Earth has almost no chance of being hit by any of the asteroids listed and NASA even mentions that as well on their website.”

Vabolis said he created the graphic because he really enjoys creating projects outside of his curriculum to help hone his skills, plus it is just a fun pastime for him. “I’ve always been fascinated by outer space so I wanted to do a graphic within that subject,” Vabolis said in an email. “I came up with the Near Earth Objects topic because it’s a fairly current subject and after doing a little research I found that no one else had created such a graphic yet.”

The graphic was created using the information on NASA’s Near Earth Object Fact Sheet website, which states, “There are no known NEO’s on a collision course with the Earth. There is a possibility that an as yet undiscovered large NEO may hit the Earth, but the probability of this happening over the next 100 years is extremely small.”

So breathe easy and enjoy learning more about NEO’s from Vabolis’ graphic. You can see more of his work at his page on Behance.

How to Deflect an Asteroid with Today’s Technology

Artist concept of a space tug. Credit: NASA

Apollo 9 astronaut Rusty Schweickart is among an international group of people championing the need for the human race to prepare for what will certainly happen one day: an asteroid threat to Earth. In an article on Universe Today published yesterday, Schweickart said the technology is available today to send a mission to an asteroid in an attempt to move it, or change its orbit so that an asteroid that threatens to hit Earth will pass by harmlessly. What would such a mission entail?

In a phone interview, Schweickart described two types of “deflection campaigns” for a threatening asteroid: a kinetic impact would roughly “push” the asteroid into a different orbit, and a gravity tractor would “tug slowly” on the asteroid to precisely “trim” the resultant change course by using nothing more than the gravitational attraction between the two bodies. Together these two methods comprise a deflection campaign.

Artist Impression of Deep Impact - Credit: NASA

“In a way, the kinetic impact was demonstrated by the Deep Impact mission back in 2005,” said Schweickart. “But that was a very big target and a small impactor that had relatively no effect on the comet. So, we haven’t really demonstrated the capability to have the guidance necessary to deflect a moderately sized asteroid.”

Most important, the gravity tractor spacecraft would arrive prior to the kinetic impactor, precisely determine the asteroid’s orbit and observe the kinetic impact to determine its effectiveness. Following the kinetic impact it would then determine whether or not any adjustment trim were required.

“You want to know what happens when you do a kinetic impact, so you want an ‘observer’ spacecraft up there as well,” Schweickart explained. “You don’t do a kinetic impact without an observation, because the impactor destroys itself in the process and without the observer you wouldn’t know what happened except by tracking the object over time, which is not the best way to find out whether you got the job done.”

So, 10-15 years ahead of an impact threat — or 50 years if you have that much time — an observer spacecraft is sent up. “This, in fact, would also be a gravity tractor,” Schweickart said. “It doesn’t have to be real big, but bigger gets the job done a little faster. The feature you are interested in the outset is not the gravity tractor but the transponder that flies in formation with the asteroid and you track the NEO, and back on Earth we can know exactly where it is.”

Schweickart said even from ground tracking, we couldn’t get as precise an orbit determination of an NEO as we could by sending a spacecraft to the object. Additionally, generally speaking, we may not know when we send an observer spacecraft what action will be required; whether an impact will be required or if we could rely on the gravity tractor. “You may launch at the latest possible time, but at that time the probability of impact may be 1 in 5 or 1 or 2,” Schweickart said. “So the first thing you are going to do with the observer spacecraft is make a precise orbit determination and now you’re going to know if it really will impact Earth and even perhaps where it will impact.”

Artist concept of an impactor heading towards an asteroid. Credit: ESA

After the precise orbit is known, the required action would be determined. “So now, if needed you launch a kinetic impactor and now you know what job has to be done,” Schweickart said. “As the impactor is getting ready to impact the asteroid, the observer spacecraft pulls back and images what is going on so you can confirm the impact was solid, –not a glancing blow — and then after impact is done, the observer spacecraft goes back in and makes another precision orbit determination so that you can confirm that you changed its velocity so that it no longer will hit the Earth.”

The second issue is, even if the NEO’s orbit has been changed so that it won’t hit Earth this time around, there’s the possibility that during its near miss it might go through what is called a “keyhole,” whereby Earth’s gravity would affect it just enough that it would make an impact during a subsequent encounter with Earth. This is a concern with the asteroid Apophis, which is projected to miss Earth in 2029, but depending on several factors, could pass through a keyhole causing it to return to hit Earth in 2036.

“So if it does go through that keyhole,” said Schweickart, “now you can use the gravity tractor capability of the spacecraft to make a small adjustment so that it goes between keyholes on that close approach. And now you have a complete verified deflection campaign.”

Schweickart said a Delta-sized rocket would be able to get a spacecraft to meet up with an asteroid. “A Delta rocket would work,” he said, “but if there is a more challenging orbit we might have to use something bigger, or we may have to use a gravity assist and do mission planning for type of thing which hasn’t been done yet. So we can get there, we can do it – but ultimately we will probably need a heavy lift vehicle.”
As for the spacecraft, we can use a design similar to vehicles that have already been sent into space.

“A gravity tractor could be like Deep Space 1 that launched in 1998,” Schweickart said. “ You can make any spacecraft into a gravity tractor fairly easily.”

Rusty Schweickart

But it hasn’t been demonstrated and Schweickart says we need to do so.

“We need to demonstrate it because we – NASA, the technical community, the international community — need to learn what you find out when you do something for the first time,” he said. “Playing a concerto in front of an audience is quite different from playing it alone in your house.”

Is the World Ready for An Asteroid Threat? Apollo’s Schweickart Pushes for Action

Computer generated simulation of an asteroid strike on the Earth. Credit: Don Davis/AFP/Getty Images

If we discover an asteroid heading directly towards Earth, are we ready to deal with the challenges of either deflection strategies or an evacuation prior to impact? Apollo 9 astronaut Rusty Schweickart has spent years championing the need for the human race to prepare for what will certainly happen one day: an asteroid threat to Earth. Schweickart is Chairman of the Board of the B612 Foundation, a non-profit private foundation that supports the development and testing of a spaceflight concept to protect the Earth from future asteroid impacts, and he says we have the technology today to deal with it, but nothing has been verified or tested. “We need to mobilize that technology and achieve an international consensus on what actions should be taken,” he told Universe Today.

Schweickart also co-chairs — with another former astronaut, Tom Jones — the Planetary Defense Task Force of the NASA Advisory Council. On October 6, 2010, the Task Force submitted a list of five recommendations to the Council to suggest how NASA should organize, investigate, prepare, and lead national and international efforts defending our planet from an asteroid impact.

Rusty Schweickart

“Our report and recommendations are a necessary, but not sufficient element of a sequence of actions which hopefully will lead to humanity being able to prevent future asteroid impacts with Earth,” Schweickart explained. “Assuming positive action by OSTP (Office of Science and Technology Policy) and the Congress, we’ll be well on our way to preventing future impact disasters.”

The report stresses that NASA should significantly improve the ability to discover and track potential NEO impactors to allow for early detection, develop effective impact mitigation techniques, and prepare an adequate response to the range of potential impact scenarios.

These recommendations have been approved by the Advisory Council, and the report was submitted to the NASA Administrator. Then, the Office of Science and Technology Policy (OSTP) is supposed to make a decision by tomorrow – Friday, October 15, 2010 –to make assignments in the US government as to what the breakdown of work should be to protect the Earth from an asteroid impact.

Among the recommendations in the PDTF report is developing mitigation techniques. But could NASA do this type of work within their new budget? “People intuitively think that if you’re going to be pushing asteroids around, that work will take over NASA,” said Schweickart said in a phone interview with Universe Today . “Wrong. It would be a ripple in NASA’s budget, a pimple, 1.5-2.0 percent at the most of NASA’s annual budget for 10 years then dropping back to less than 0.5%. It does not displace anything else that NASA is doing. It would be a small budgetary issue, but the importance of it is huge. This saves lives, protects the global environment, and saves future generations.”

*Update (10/16/10) Schweickart asked to add to his comments about budgetary needs, as there were some misinterpretations. “I certainly did not intend that it be interpreted as no budget increment is needed! In fact our report makes very clear that we strongly recommend that Congress increment the existing budget for this purpose and not take it out of existing programs. It is not costly, but other NASA programs should not be penalized in order to support a responsible, public safety program which would amount to only a 1.5-2.0% increment in the NASA budget.”

Artist concept of a space tug. Credit: NASA

The technology needed exists today, Schweickart said, “that is, we do not have to go into a big technology development program in order to deflect most asteroids that would pose a threat of impact. However, that technology has not been put together in a system design, and not been verified, tested or demonstrated that it could actually deflect an asteroid. So, we need to test everything – test the very sequence we would use for a deflection campaign.”

The best way to test it would be to have NASA, or perhaps a consortium of space agencies, carry out an actual mission to test the entire system.

“Not with an asteroid that threatens an impact,” said Schweickart, “but with an asteroid that is just minding its own business, and we’d have the opportunity to show we can change its orbit slightly in a controlled way.”

The crew of Apollo 9: Commander James McDivitt, Command Module Pilot Dave Scott and Lunar Module Pilot Rusty Schweickart. Credit: NASA

Schweickart said the B612 foundation, and the Association of Space Explorers (ASE; the professional organization of astronauts and cosmonauts from around the world) and every planetary defense conference held recently has discussed the need for such a capability validation.

But the recommendations made by the PDTF are, for now just suggestions, and certainly not a mandate for NASA to prepare in a meaningful way for an asteroid threat.

“There’s no official design of a deflection mission because there is no responsibility to do it,” Schweickart said. “Right now, NASA’s assignment is only to find these asteroids. Period. That’s it.”

But, with the October 15 deadline almost here, Schweickart is hopeful. “Hopefully, that will begin the process of NASA actually having this responsibility,” he said, “and that Congress will respect that and a budget be allocated in order to do the job. Then mission planners can start designing demonstration missions.”

However, if the past is any indication, any mandate wouldn’t necessarily mean a mission would happen soon.

The Pan-STARRS telescope on Haleakala, Hawaii. Photograph by Rob Ratkowski for the PS1SC

Congress directed NASA to do the “Spaceguard” survey to find all asteroids around 40 meters and larger by 2020. “To come close to achieving that, we need to have new telescopes that will have greater capabilities than what we’ve been using to date,” said Schweickart. “Right now the Pan-STARRS telescope has the equivalent of one eye squinting, and it is not exactly knocking everybody’s socks off. LSST (Large Synoptic Survey Telescope) is still hundreds of millions of dollars before being a fully funded project.”

Schweickart said the Task Force heard presentations on perhaps better ways to complete that Congressional goal and their report indicates that at least 87% of the large asteroids whose impacts could pose a global threat to our civilization have been discovered. Right now, none pose a credible threat of a collision with Earth for the foreseeable future. But the discovery rate of the much more numerous smaller NEOs, — which represent a regional or local impact hazard — “will soon confront us with objects presenting worrisome but uncertain probabilities for a future collision with Earth. Such situations will appear more frequently as the discovery rate increases, and the nation presently has no clear policy on how to address such a situation,” the report says.

“Congress’s favorite thing to do is to tell you to do something and not give you any money for it,” Schweickart said. “That is not very responsible and it doesn’t always work and it’s not the right way a government should operate, especially where public safety is at issue. Therefore it is important that the OSTP lead the way on this issue on October 15.”

Tomorrow: What would an asteroid deflection campaign entail?

For more information:
B612 Foundation

Planetary Defense Task Force of the NASA Advisory Council

Office of Science and Technology Policy

Pan-STARRS

Large Synoptic Survey Telescope

Hubble Sees Asteroid Collision in Slow-Motion

The collision between two asteroids in early 2009 produced a strange, X-shaped aftermath. Image Credit: NASA, ESA and D. Jewitt (UCLA)

[/caption]

Alas, the image above is not marking alien pirate treasure in space – for the first time, the aftermath of a collision between two asteroids has been imaged. Last January, an international team of astronomers saw the strange X-shaped object with the Hubble Space Telescope after ground-based observatories spotted evidence of an asteroid collision in the asteroid belt. The team has now used Hubble to do follow-up observations and uncovered a few surprises about the collision.

The collision produced an X shape, followed by a long comet-like tail. The astronomers, led by David Jewitt of the University of California in Los Angeles, were surprised to find that the collision did not happen as recently as they’d thought, but had actually occurred almost a year previous to the detection. It’s likely that the two asteroids smashed together sometime in February or March of 2009.

“When I saw the Hubbble image I knew it was something special,” said ESA astronomer Jessica Agarwal in a press release.

Named P/2010 A2, the object is located in the asteroid belt between Mars and Jupiter. Asteroid collisions are thought to be a commonplace occurrence, and are responsible for kicking up dust in our Solar System and other planetary systems. Just how much dust is produced, and how frequent the collisions happen is still a hazy topic, and the recent observation of P/2010 A2 should help astronomers to better model this phenomenon.

By figuring out how much dust is produced by the process of ‘collisional grinding’, astronomers could better model the dusty debris disks of other planetary systems, as well as our own.

The team monitored the slow-motion expansion of the leftovers of the colliding asteroids with the Hubble Space Telescope between January and May of 2010. They’ve determined that P/2010 A2 is about 120 meters (393 feet) wide, and the particles of dust that make up the tail following it are between 1 millimeter (0.04 inches) to 2.5 centimeters (1 inch) in diameter.

The collision producing the object P/2010 A2, as observed over the course of a few months by Hubble. Image Credit: NASA, ESA and D. Jewitt (UCLA)

The remnants of the collision suggest that a smaller asteroid – 3 to 5 meters (10-16 feet) wide – collided into a larger one at about 18,000 km per hour (11,000 miles per hour). This vaporized the smaller asteroid, and ejected material from the larger one.

Why is the object X-shaped? That mystery has yet to be determined. It is likely, according to the team, that the filaments produced by the collision suggest asymmetries in the colliding objects. Further observations of P/2010 A2 with the Hubble in 2011 will show just how the collision continues to change, allowing for a more precise model of how it started out.

The observed tail is caused by the same mechanism that produces cometary tails – radiation pressure from the Sun pushes the dust away from the nucleus of the object.

As to why we don’t have thousands of Hubble images to produce a whole alphabet of asteroid collisions shapes – “Catching colliding asteroids on camera is difficult because large impacts are rare, while small ones, such as the one that produced P/2010 A2, are exceedingly faint,” Jewitt said. The results of their observations will be published in the October 14th issue of the journal Nature.

Source: ESA Press Release

Video: Asteroid 2010 TD54 Whizzes Close to Earth

A 'movie' put together from images of the October 12, 2010 approach of asteroid 2010 TD54.Image credit: Patrick Wiggins, NASA/JPL Solar System Ambassador to Utah

[/caption]

Amateur astronomer Patrick Wiggins from Utah (and fellow Solar System Ambassador) was able to capture images this morning of the newly found asteroid 2010 TD54 that whizzed by Earth — harmlessly — coming within about 46,000 km (less than 30,000 miles) of our planet. The small asteroid was only detected this past Saturday, and NASA’s Near Earth Object Office predicted there was only 1 in a million chance it would hit Earth, and was small enough that it wouldn’t survive a fiery trip through the atmosphere even if it was going to make crash head-on into Earth. Patrick put together a couple of “movies” from the images he captured. They show the asteroid whispering silently through the sky, although moving along fairly quickly at 17.37 km/s. Estimates are the asteroid is about 7.3 m wide, and contained the energy of about 22 kilotons if it would have come crashing through Earth’s atmosphere. For this animation, the mount was set to allow the target to pass through the field of view, and includes 16 five-second exposures shot between 08:51:51 and 08:54:04 UTC.

There’s an additional image below.

In this animation, asteroid 2010 TD54 appears stationary as the stars move. Image credit: Patrick Wiggins, NASA/JPL Solar System Ambassador to Utah

For this set of images, Patrick set the mount set to nearly follow the target. The animation includes 23 five- second exposures shot between 09:01:27 and 09:04:39 UTC.

Patrick uses a Paramount ME, Celestron C-14 operating at f/5.5, SBIG ST-10 binned 3×3 with clear filter. The field of view in this image is about 18×26 arc minutes.

“The target was rotating quickly during both sequences which is “reflected” (pun intended) by its rapidly changing brightness,” Patrick wrote on a news group webpage for asteroid and comet researchers.

Great work! And Universe Today thanks Patrick for allowing us to post his images/animations.

While most people are breathing a sigh of relief that this asteroid didn’t hit Earth, others are of the opinion this near miss was a missed opportunity. “The message here should be: It was a pity that TD54 *missed* Earth because it would have made a nice fireball and meteorite shower!” said astronomer and writer Daniel Fischer, who writes the Cosmos4U blog.

Other astronomers and meteorite buffs said this asteroid could have ended up like the famous 2008 TC3, the first asteroid to have been spotted before hitting Earth, which crashed in northern Sudan, providing a treasure trove of information about asteroids and the early solar system in a very handy “sample return.”

Breaking News: Small NEO Could Pass Within 60,000 km of Earth on Tuesday

Artists impression of an asteroid flying by Earth. Credit: NASA

[/caption]

A small asteroid will likely pass very close to Earth this week Tuesday. Astronomers are still tracking the object, now designated as 2010 TD54, and various estimates say it could possibly come within anywhere from 52,000 km (33,000 miles) to 64,000 km (40,000 miles) on October 12, with closest approach at approximately 11:25 UT. Information on the IAU Minor Planet Center website lists the object as coming with 0.0003 AU. The size of the object has not been determined, but estimates say it is likely smaller than 10 meters. We’ll provide an update as soon as more information is available.

UPDATE: Don Yeomans, Manager of NASA’s Near-Earth Object Program Office replied to an inquiry about the object and said the newly discovered NEO 2010 TD54 is approximately 5-10 meters in size, and is now predicted to pass about 46,000 km from Earth’s surface at about 07:25 EDT (11:25 UT) on Tuesday, Oct 12, 2010. It was discovered by Catalina Sky Survey on Saturday morning.

“Only 1 in a million chance of an impact,” Yeomans said, “and even if it does impact, it is not large enough to make it through the Earth’s atmosphere to cause ground damage.”

The object may be visible to amateur telescopes as a 14th magnitude “star” — it will be traveling through the constellations Pisces and Aquarius.

Sources: IAU Minor Planet Center, Unmanned Spaceflight,Yahoo News Groups

Water Ice Found on Another Asteroid

Artists concept of an asteroid around a planetary body. Credit: Gabriel Pérez, Instituto de Astrofisica de Canarias, Spain

[/caption]

There could be a lot more water out there than anyone thought. A second asteroid has been found to contain water ice. In April of this year, water ice and organics was found on 24 Themis, a 200-kilometer wide asteroid. Now, the two teams of researchers made who made the first discovery have now found the same materials on asteroid 65 Cybele.

“This discovery suggests that this region of our solar system contains more water ice than anticipated,” said University of Central Florida Professor Humberto Campins. “And it supports the theory that asteroids may have hit Earth and brought our planet its water and the building blocks for life to form and evolve here.”

Asteroid 65 Cybele is somewhat larger than asteroid 24 Themis, with a diameter of 290 km (180 miles). Both asteroids are located in the asteroid belt that sits halfway between Mars and Jupiter.

Generally, asteroids were thought to be very dry, but it now appears that when the asteroids and planets were first forming in the very early Solar System, ice extended far into the Main Belt region, which could mean water and organics may be more common near each star‘s habitable zone.

See our article from yesterday about molecules of life’s building blocks in Titan’s atmosphere and how it could add a third way for life to spring up on a planet (one being asteroid delivery, two being rising from the primordial soup thought to exist on early Earth).

The team’s paper will be published in the European Journal “Astronomy and Astrophysics,” and Campins presented his findings at the American Astronomical Society’s Division of Planetary Sciences meeting this week.

Source: University of Central Florida