NASA has Approved a Space Telescope That Will Scan the Skies for Dangerous Near-Earth Asteroids

A lot of the threats humanity faces come from ourselves. If we were listing them, we’d include tribalism, greed, and the fact that we’re evolved primates, and our brains have a lot in common with animal brains. Our animalistic brains subject us to many of the same destructive emotions and impulses that animals are subject to. We wage war and become embroiled in intergenerational conflicts. There are genocides, pogroms, doomed boatloads of migrants, and horrible mashups of all three.

Isn’t humanity fun?

But not all of the threats we face are as intractable as our internal ones. Some threats are external, and we can leverage our technologies and our knowledge of nature in the struggle against them. Case in point: asteroids.

Continue reading “NASA has Approved a Space Telescope That Will Scan the Skies for Dangerous Near-Earth Asteroids”

Did Asteroid Impacts Provide Both the Heat and Raw Ingredients to Enable Life?

An artist's conception of an asteroid collision, which leads to how "families" of these space rocks are made in the belt between Mars and Jupiter. Credit: NASA/JPL-Caltech

This is our Great Question: How did life begin on Earth? Anyone who says they have the answer is telling tall tales. We just don’t know yet.

While a definitive answer may be a long way off—or may never be found—there are some clever ways to nibble at the edges of that Great Question. A group of researchers at Kobe University in Japan are taking their own bites out of that compelling question with a question of their own: Did the heat from asteroid impacts help life get started?

Continue reading “Did Asteroid Impacts Provide Both the Heat and Raw Ingredients to Enable Life?”

Extrasolar Object Interceptor Would be Able to Chase Down the Next Oumuamua or Borisov and Actually Return a Sample

What if we had the ability to chase down interstellar objects passing through our Solar System, like Oumuamua or Comet Borisov? Such a spacecraft would need to be ready to go at a moment’s notice, with the capacity to increase speed and change direction quickly.

That’s the idea behind a new mission concept called the Extrasolar Object Interceptor and Sample Return spacecraft. It has received exploratory funding from NASA through its Innovative Advanced Concepts (NIAC) program.

“Bringing back samples from these objects could fundamentally change our view of the universe and our place in it,” says Christopher Morrison, an engineer from the Ultra Safe Nuclear Corporation-Tech (USNC-Tech) who submitted the proposal to NIAC.            

Continue reading “Extrasolar Object Interceptor Would be Able to Chase Down the Next Oumuamua or Borisov and Actually Return a Sample”

If you Want to Move an Asteroid, you Need the Right Kind of Nuclear Explosion

Using nuclear devices to deflect or disrupt an asteroid. Sounds a bit crazy, no? Maybe a little too Hollywood? And yet, detonating nukes in space may be necessary someday for the sake of planetary defense. In order for this method to be effective, scientists need to work out all the particulars in advance. That means knowing how much force will be necessary depending on the mass and trajectory of the asteroid.

Recently, a research collaboration between Lawrence Livermore National Laboratory (LLNL) and the Air Force Institute of Technology (AFIT) investigated how the energy output of a nuclear detonation could affect the path of an asteroid. This consisted of modeling different nuclear reactions (fission or fusion) to determine the neutron energy generated, which could potentially pave the way for a new type of asteroid redirect mission (ARM).

Continue reading “If you Want to Move an Asteroid, you Need the Right Kind of Nuclear Explosion”

100-meter Asteroid Created a Strange Impact Event in Antarctica 430,000 Years Ago

The effects of ancient asteroid impacts on Earth are still evident from the variety of impact craters across our planet. And from the Chelyabinsk event back in 2013, where an asteroid exploded in the air above a Russian town, we know how devastating an “airburst” event can be.

Now, researchers in Antarctica have discovered evidence of a strange intermediate-type event – a combination of an impact and an airburst. The event was so devastating, its effects are still apparent even though it took place 430,000 years ago.

Continue reading “100-meter Asteroid Created a Strange Impact Event in Antarctica 430,000 Years Ago”

OSIRIS-REx Did One Last Close Flyby of Asteroid Bennu. It’s Almost Time to Come Home

After more than two years in orbit around asteroid Bennu, NASA’s OSIRIS-REx spacecraft is ready to come home. It’s bringing with it a pristine sample of space rocks that geologists here on Earth are eager to study up close. The sample will arrive in September 2023, but we won’t have to wait nearly that long for new data from OSIRIS-REx. Last week, the probe carried out one final flyby of Bennu, in an effort to photograph the sample collection site. The photographs are being downlinked now, and should be here by midweek.

If you’ve been following the OSIRIS-REx mission, you probably already know why scientists are keen to see these photographs, but if you haven’t, hold on to your hats – it’s a wild story.

Continue reading “OSIRIS-REx Did One Last Close Flyby of Asteroid Bennu. It’s Almost Time to Come Home”

Primordial Asteroids That Never Suffered Massive Collisions all Seem to be Larger Than 100 km. Why?

Planetary systems form out of the remnant gas and dust of a primordial star. The material collapses into a protoplanetary disk around the young star, and the clumps that form within the disk eventually become planets, asteroids, or other bodies. Although we understand the big picture of planetary formation, we’ve yet to fully understand the details. That’s because the details are complicated.

Continue reading “Primordial Asteroids That Never Suffered Massive Collisions all Seem to be Larger Than 100 km. Why?”

Organic Material Found on an Asteroid Sample Returned by Hayabusa 1

Panspermia is an idea that has been around for a long time.  It was first mentioned in the 5th century BC by Anaxagoras, one of the most prominent pre-Socratic philosophers.  The problem with the theory is that there’s never really been any evidence to back it up.  That lack of evidence has changed dramatically in the last 20 or so years, and recently more data has been added to that dataset.  A team from Royal Holloway, part of the University of London, found organic material and water in a sample of Itokawa, the asteroid the first Hayabusa mission visited over 10 years ago.

Continue reading “Organic Material Found on an Asteroid Sample Returned by Hayabusa 1”