Can “Warp Speed” Planets Zoom Through Interstellar Space?

[/caption]Nearly ten years ago, astronomers were stunned to discover a star that had been apparently flung from its own system and travelling at over a million kilometers per hour. Over the years, a question was brought up: If stars can be ejected at a high velocity, what about planets?

Avi Loeb (Harvard-Smithsonian Center for Astrophysics) states, “These warp-speed planets would be some of the fastest objects in our Galaxy. If you lived on one of them, you’d be in for a wild ride from the center of the galaxy to the Universe at large.”

Idan Ginsburg (Dartmouth College) adds, “Other than subatomic particles, I don’t know of anything leaving our galaxy as fast as these runaway planets.”

The mechanics responsible for the super-fast planets are similar to those responsible for “hypervelocity” stars. With stars, if a binary system drifts too closely to a supermassive black hole (such as the ones in the center of galaxies), the gravitational forces can separate the stars – sending one outward at incredible speeds, and the other in orbit around the black hole. Interestingly enough, “Warp Speed” planets can theoretically travel at a few percent of the speed of light – not quite as fast as Star Trek’s Enterprise, but you get the point.

The team, which includes Loeb and Ginsburg, created computer models to simulate the outcome if each star had planets orbiting it. The outcome of the model showed that the star shot into interstellar space would keep its planets, but the star “captured” into orbit around the black hole would have its planets stripped and sent outward at incredible speeds. Typical speeds for the planets range from 11-16 million kilometers per hour, but given the proper conditions could approach even higher velocities.

As of now, it’s impossible for astronomers to detect a wandering planet due to their small size, distance, and rarity. By detecting the dimming of light levels from a hypervelocity star as an orbiting planet crosses its face, astronomers could detect planets that orbit said star.

Ginsburg added, “With one-in-two odds of seeing a transit, if a hypervelocity star had a planet, it makes a lot of sense to watch for them.”

Loeb concluded with, “Travel agencies advertising journeys on hypervelocity planets might appeal to particularly adventurous individuals.”

If you’d like to learn more about hypervelocity planets, you can access a draft version of the upcoming paper at: http://arxiv.org/abs/1201.1446

Source(s): Harvard-Smithsonian Center for Astrophysics , Hypervelocity Planets and Transits Around Hypervelocity Stars

Ray Sanders

In addition to being a published astronomer specializing in variable stars, Ray Sanders has blogged for Universe Today, and The Planetary Society blog, among others.

Recent Posts

Dinkinesh's Moonlet is Only 2-3 Million Years Old

Last November, NASA's Lucy mission conducted a flyby of the asteroid Dinkinish, one of the…

23 hours ago

The Universe Could Be Filled With Ultralight Black Holes That Can't Die

Steven Hawking famously calculated that black holes should evaporate, converting into particles and energy over…

1 day ago

Starlink on Mars? NASA Is Paying SpaceX to Look Into the Idea

NASA has given the go-ahead for SpaceX to work out a plan to adapt its…

2 days ago

Did You Hear Webb Found Life on an Exoplanet? Not so Fast…

The JWST is astronomers' best tool for probing exoplanet atmospheres. Its capable instruments can dissect…

2 days ago

Vera Rubin’s Primary Mirror Gets its First Reflective Coating

First light for the Vera Rubin Observatory (VRO) is quickly approaching and the telescope is…

2 days ago

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

3 days ago