Categories: AsteroidsMissions

Confirmed: Hayabusa Nabbed Asteroid Particles

[/caption]

The Japan Aerospace Exploration Agency (JAXA) has confirmed that the tiny particles inside the Hayabusa spacecraft’s sample return container are in fact from the asteroid Itokawa. Scientists examined the particles to determine if the probe successfully captured and brought back anything from the asteroid, and in a press release said “about 1,500 grains were identified as rocky particles, and most were determined to be of extraterrestrial origin, and definitely from Asteroid Itokawa.”

These are the first samples from an asteroid ever returned to Earth; the only other extraterrestrial samples brought back to Earth came from the Apollo missions to the Moon. See correction, below.

Previously, JAXA said that although particles were inside the container, it wasn’t clear if they were from the asteroid or if they could be of terrestrial origin (dust from Earth that could have been inside the container).

The particles samples were collected from the chamber by a specially shaped Teflon spatula and examined with a scanning electron microscope. There were two chambers inside the container, and from the press release (in Japanese) it appears all the particles were found in one chamber, Chamber A.

Most of the particles are extremely small, about 10 microns in size and require special handling and equipment. Unfortunately they aren’t the “peanut-sized” chunks of rock that the mission originally hoped to capture. This will make analyzing the particles difficult, but not impossible.

Hayabusa's sample return cannister and parachute on the ground in the Australian outback. Credit: JAXA

During the seven-year round trip journey, Hayabusa arrived at Itokawa in November, 2005. The mechanism that was intended to capture the samples apparently failed, but scientists were hopeful that at least some dust had made its way into the return canister. After a circuitous and troubled-filled return trip home, the sample return capsule was ejected and landed in Australia in June of this year.

Here are the other successful sample return missions:
Apollo Moon missions (1969-1972)
Soviet Union’s Luna 16 (1970) returned 101 grams of lunar soil
Luna 20 (1974) returned 30 grams
Luna 24 (1976) returned 170.1 grams.
The Orbital Debris Collection (ODC) experiment, deployed on the Mir space station for 18 months during 1996–1997, used aerogel to capture interplanetary dust particles in orbit.
Genesis (2001-2004) captured and returned molecules collected from the solar wind. It crashed in the Utah desert, but samples were able to be retreived.
Stardust (1999-2006) collected particles from the tail of a comet, as well as a few interstellar dust grains.

Source: JAXA

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

By Watching the Sun, Astronomers are Learning More about Exoplanets

Watching the Olympics recently and the amazing effort of the hammer throwers was a wonderful…

6 hours ago

Coronal Loops-Digital Art Combination Captures Power of the Sun, Rendered by Andrew McCarthy

Our Sun is one of the most fascinating objects in the universe and photographing it…

7 hours ago

Estimating the Basic Settings of the Universe

The Standard Model describes how the Universe has evolved at large scale. There are six…

7 hours ago

Dark Matter Could Have Driven the Growth of Early Supermassive Black Holes

The James Webb Space Telescope (JWST) keeps finding supermassive black holes (SMBH) in the early…

15 hours ago

If Gravitons Exist, this Experiment Might Find Them

There are four fundamental forces in the Universe; strong, weak, electromagnetic and gravity. Quantum theory…

1 day ago

How Vegetation Could Impact the Climate of Exoplanets

The term 'habitable zone' is a broad definition that serves a purpose in our age…

1 day ago