Categories: AstronomyesaScience

Herschel Finds Water Around a Carbon Star

[/caption]

There’s something strange going on around the red giant star CW Leonis (a.k.a. IRC+10216). Deep within the star’s carbon-rich veil, astronomers have detected water vapor where no water should be.

CW Leonis is similar in mass to the sun, but much older and much larger. It is the nearest red giant to the sun, and in its death throes it has hidden itself in a sooty, expanding cloud of carbon-rich dust. This shroud makes CW Leonis almost invisible to the naked eye, but at some infrared wavelengths it is the brightest object in the sky.

Water was originally discovered around CW Leonis in 2001 when the Submillimeter Wave Astronomy Satellite (SWAS) found the signature of water in the chilly outer reaches of the star’s dusty envelope at a temperature of only 61 K. This water was assumed to be evidence for vaporizing comets and other icy objects around the expanding star. New observations with the SPIRE and PACS spectrometers on the Herschel Space Observatory reveal that there’s something much more surprising going on.

“Thanks to Herschel’s superb sensitivity and spectral resolution, we were able to identify more than 60 lines of water, corresponding to a whole series of energetic levels of the molecule,” explains Leen Decin from the University of Leuven and leader of the study. The newly-detected spectral lines indicate that the water vapor is not all in the cold outer envelope of the star. Some of it is much closer to the star, where temperatures reach 1000 K.

No icy fragments could exist that close to the star, so Decin and colleagues had to come up with a new explanation for the presence of the hot water vapor. Hydrogen is abundant in the envelope of gas and dust surrounding carbon stars like  CW Leonis, but the other building block of water, oxygen, is typically bound up in molecules like carbon monoxide (CO) and silicon monoxide (SiO). Ultraviolet light can split these molecules, releasing their stored oxygen, but red giant stars don’t make much UV light so it has to come from somewhere else.

An illustration of the chemical reactions caused by interstellar UV light interacting with molecules surrounding CW Leonis. ESA. Adapted from L. Decin et al. (2010)

The dusty envelopes around carbon stars are known to be clumpy, and that turns out to be the key to explaining the mysterious water vapor. The patchy structure of the shroud around CW Leonis lets UV light from interstellar space into the depths of the star’s envelope. “Well within the envelope, UV photons trigger a set of reactions that can produce the observed distribution of water, as well as other, very interesting molecules, such as ammonia (NH3),” says Decin. “This is the only mechanism that explains the full range of the water’s temperature.”

In the coming months, astronomers will test this hypothesis by using Herschel to search for evidence of water near other carbon stars.

Ryan Anderson

Ryan Anderson is a graduate student at Cornell University. He has a background in astronomy and physics, but now spends his days studying Mars. His research focuses on preparing for the upcoming Mars Science Laboratory mission by studying potential landing sites and shooting rocks with lasers.

Recent Posts

Enceladus’s Fault Lines are Responsible for its Plumes

The Search for Life in our Solar System leads seekers to strange places. From our…

13 hours ago

Lunar Explorers Could Run to Create Artificial Gravity for Themselves

Few things in life are certain. But it seems highly probable that people will explore…

15 hours ago

This is an Actual Picture of Space Debris

Space debris is a growing problem, so companies are working on ways to mitigate it.…

15 hours ago

Insanely Detailed Webb Image of the Horsehead Nebula

Few space images are as iconic as those of the Horsehead Nebula. Its shape makes…

2 days ago

Binary Stars Form in the Same Nebula But Aren’t Identical. Now We Know Why.

It stands to reason that stars formed from the same cloud of material will have…

2 days ago

Earth Had a Magnetosphere 3.7 Billion Years Ago

We go about our daily lives sheltered under an invisible magnetic field generated deep inside…

2 days ago