sun

Small Magnetic Fields Have a Big Impact on the Sun's Atmosphere

Surrounding the brilliant Sun is a layer of diffuse plasma known as the corona. You can’t see it most of the time, but if you happen to experience a total eclipse, the corona is the glow that surrounds the shadow of the Moon. The corona is pale white, almost pink because it has a temperature of more than a million Kelvin. This is vastly hotter than the surface of the Sun, which is about 6,500 K. So how does the corona get so hot?

The usual explanation is that the corona is heated by the dynamics of the solar magnetic field. The surface of the Sun can be turbulent at times, emitting arcing filaments of plasma known as prominences, and sometimes powerful solar flares. It’s easy to see how these can heat the corona when the Sun is very active. But the Sun also has quiet periods, where there are few sunspots, and prominances and flares are rare. If the corona is heated by these events, then why doesn’t the corona cool when the Sun is in a quiet period? The answer to that can be found in a new paper published in The Astrophysical Journal Letters.

The instruments of the NASA/ESA Solar Orbiter. Credit: ESA-S.Poletti

The study is based on data from the Solar Orbiter, which has an array of detectors to measure magnetic fields, solar winds, and high-energy particles, as well as capture high-resolution images of the Sun’s surface. It has a dynamic orbit that occasionally takes it closer to the Sun than Mercury, which allows it to capture data like never before.

During a close approach in October 2022, the rugged spacecraft’s Extreme Ultraviolet Imager (EUI) captured detailed images of small plasma arcs, and the Polarimetric and Helioseismic Imager (PHI) measured the magnetic polarity of the solar surface in the same region. It found that small polarity variations can drive the formation of arcs of plasma, which is sufficient to heat the corona even during the most quiet periods of solar activity. In other words, even when the Sun is not at an energetic boil, there is a constant simmer of activity that keeps the corona hot.

The Solar Orbiter just made another close approach to the Sun earlier this month, getting to within just 43 million kilometers of the solar surface. It’s gathered even more data, which is bound to reveal even more secrets of the Sun in the near future.

Reference: Chitta, L. P., et al. “Fleeting small-scale surface magnetic fields build the quiet-Sun corona.” The Astrophysical Journal Letters 956.1 (2023): L1.

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance.…

10 hours ago

Next Generation Ion Engines Will Be Extremely Powerful

During the Space Race, scientists in both the United States and the Soviet Union investigated…

14 hours ago

Neutron Stars Could be Capturing Primordial Black Holes

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to…

14 hours ago

Japan’s Lunar Lander Survives its Third Lunar Night

Space travel and exploration was never going to be easy. Failures are sadly all too…

20 hours ago

Black Holes Can Halt Star Formation in Massive Galaxies

It’s difficult to actually visualise a universe that is changing. Things tend to happen at…

1 day ago

Mapping the Milky Way’s Magnetic Field in 3D

We are all very familiar with the concept of the Earth’s magnetic field. It turns…

2 days ago