Technology

Spacecraft Could be Equipped With Tiny Thrusters That Use Water for Propellant

Engineers working with the European Space Agency have developed a new thruster design smaller than the tip of your finger. Despite its small size, this mini-thruster designed for CubeSats appears to be highly efficient without the use of toxic chemicals.

Called the Iridium Catalysed Electrolysis CubeSat Thruster (ICE-Cube Thruster), it allows CubeSats to maneuver without bulky gas propellant storage. The thruster uses an electrolyzer to separate water into hydrogen and oxygen, which is expelled into space, pushing the spacecraft in the opposite direction. A test achieved 1.25 millinewtons of sustained thrust, which is good enough for this application. Small Cubesats usually launch to space as secondary payloads on other missions.

Comparatively, the much larger Block 1 Space Launch System rocket (SLS) generates 39.1 Meganewtons (8.8 million pounds) of thrust at launch to lift its much larger rocket and payload into space.  

The tiny thruster was developed at Imperial College in the UK.

“The reason for such a small-scale thruster is to meet the needs of the rapidly growing small satellite market,” said research postgraduate Charlie Muir from Imperial who is working on this project with ESA.

The ICE-200 thruster which uses the same manufacturing techniques as microchips. Credit: Imperial College.

The design is quite simple: an electrolyzer runs a 20-watt current through water to produce hydrogen and oxygen to propel the thruster. The combustion chamber and nozzle measure less than 1mm in length, and since it is so small, it needs to be constructed in the same fashion as microchips.

Since its doesn’t use regular fuel, no pressurization is needed to store it, so storage and handling systems can be smaller and much simpler. The CubeSat’s solar arrays can be used to harness energy from the Sun to supply the electric power needed to operate the miniature electrolysis system.

So far, the ICE-Cube Thruster has only been tested in a laboratory setting.

NASA has also been studying the use of water-based fuels for Cubesats, but their thruster system is not as small as the ICE-Cube Thruster.

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

SpaceX Moves Ahead With Falcon 9 Launches After FAA Go-Ahead

The Federal Aviation Administration has ruled that SpaceX can resume Falcon 9 rocket launches while…

8 hours ago

Is This How You Get Hot Jupiters?

When we think of Jupiter-type planets, we usually picture massive cloud-covered worlds orbiting far from…

1 day ago

Now Uranus’ Moon Ariel Might Have an Ocean too

Venus is known for being really quite inhospitable with high surface temperatures and Mars is…

1 day ago

Why is JWST Having So Much Trouble with the TRAPPIST-1 System?

When the James Webb Space Telescope was launched it came with a fanfare expecting amazing…

1 day ago

Planetary Habitability Depends on its Star’s Magnetic Field

The extrasolar planet census recently passed a major milestone, with 5500 confirmed candidates in 4,243…

1 day ago

A Solution to the “Final Parsec Problem?”

Supermassive Black Holes are Nature's confounding behemoths. It's difficult for Earth-bound minds to comprehend their…

1 day ago