Categories: Dark Matter

A Worldwide Search for Dark Matter Fails to Turn up a Signal for This Mysterious Particle

Axions are a popular candidate in the search for dark matter. There have been previous searches for these hypothetical particles, all of which have come up with nothing. But recently the results of a new search for dark matter axions have been published…and has also found nothing. Still, the study is interesting because of the nature and scale of the search.

Axions are a type of hypothetical particle first proposed in the 1970s. They weren’t proposed to solve dark matter, but rather to address certain aspects of the theory of quantum chromodynamics, which describes the strong nuclear force. According to the theories, would be low mass, chargeless particles that don’t interact strongly with light. Sounds a bit like dark matter, doesn’t it?

Image of a magnetic material showing domain regions. Credit: Wikipedia user Gorchy

If axions do comprise dark matter, then one of the more subtle effects is that their quantum field would have topological defects. Basically, the axions would tend to cluster into oriented regions on scales smaller than a galaxy, but larger than Earth. It’s similar to the way unmagnetized iron contains crystals, where each crystal has its own magnetic orientation. Since the crystals are randomly oriented, on a large scale the overall magnetic field of the iron averages to zero. But on a small scale, there are domains with a uniform magnetic field, with domain walls between each region.

This new study attempts to measure an axion domain using the Global Network of Optical Magnetometers for Exotic Physics Searches (GNOME). It’s a network of 14 sensitive magnetometers in labs all over the world. Nine of them were used in this particular study. The experiment involved using laser light to magnetically align a collection of atoms. If a dark matter axion were to interact with the atoms, it would cause the magnetic field of the atoms to shift slightly, which the magnetometer could detect. This kind of small perturbation happens randomly all the time with atoms, but since an axion field domain is larger than Earth, axions at every lab should tweak atoms in the same way. What’s more, if Earth happened to pass from one axion domain to another, the axion perturbation should shift in the same way all across the globe.

Sketch of the worldwide GNOME network. Credit: Hector Masia Roig

The team gathered a month of continuous data and ran statistical correlations between labs. What they found was a wash. The atomic perturbations were indistinguishable from random noise. That doesn’t mean the experiment was a failure. The experiment places certain constraints on the possible mass of axions. Any theory proposing axion dark matter can’t have axion particles in this range. The team is moving forward with more sensitive studies that will either discover axions or further constrain them.

At this point, the search for dark matter seems to repeat the same tale. Look for a particular type of dark matter particle and fail to find them. But often that’s the way science works. We love stories of the eureka moment, where a brilliant discovery changes the world. But often science is more of an excavation, where failed hypotheses are scraped carefully away until what remains is the truth.

Reference: S. Afach et al. “Search for topological defect dark matter with a global network of optical magnetometers.Nature Physics 17.7 (2021): 1396-1401.

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

The Closeby Habitable Exoplanet Survey (CHES) Could Detect Exoplanets Within a few Dozen Light-Years of Earth Using Astrometry

A team of Chinese researchers has proposed a new mission to find Earth-like planets in…

1 day ago

Dust Storms on Mars Happen When the Planet Can’t Release its Heat Fast Enough

New research led by the USRA has found a possible explanation for planet-wide Martian dust…

2 days ago

Spinlaunch Hurled a Test Rocket Into the air. See What it Looked Like From the Payload’s Point of View

Can watching a video give you motion sickness?  If so, a commercial launch company called…

3 days ago

Is This the Future of the Milky Way?

The central region of the giant elliptical galaxy NGC 474. It's set against a backdrop…

3 days ago

Plants can grow in lunar regolith, but they’re not happy about it

NASA is sending astronauts back to the Moon by the end of this decade, and…

3 days ago

The Lunar Eclipse, Seen From the International Space Station

If you were able to witness the lunar eclipse on May 15-16, 2022, the view…

3 days ago