Categories: Mars

“Almost Perfect” Samples are Scraped From Mars Surface For Analysis

With the Phoenix Mars lander in full science-operation-swing, the robotic arm has just scraped an “almost perfect” mix of regolith and water ice for its next analysis. Using a blade on the scoop, the robotic arm carried out 50 scraping actions across the bottom of the enlarged “Snow White” trench that was excavated on June 17th (22 sols since Phoenix touched down). Today, on Sol 33 of the mission, Phoenix has been preparing little mounds of dirt ready to be scooped up and dropped into the Thermal and Evolved-Gas Analyzer (TEGA) so the constituent minerals and water can be analysed. Besides, Phoenix has just built the first ever mini-sand castles on the Martian surface!

On Sol 24 of the mission, only 24 sols after it landed on Mars, Phoenix found the first evidence of water ice on the Martian surface. Pictures taken four sols apart showed a white substance had sublimed into the tenuous Martian atmosphere at about the correct rate for water ice under those conditions. This was after a bumpy start when the clumpy regolith didn’t make it past the TEGA screen in a preliminary oven experiment. Then last week, Phoenix carried out a preliminary “wet-lab” test with the Microscopy, Electrochemistry and Conductivity Analyzer (MECA) instrument and found the mix of minerals in the Mars regolith and its pH levels had a striking resemblance with soils commonly found here on Earth. With all these groundbreaking discoveries mounting up, what can we expect next?

Well, today’s announcement suggests the next step is to thoroughly prepare small piles of samples scraped from the bottom of a trench called “Snow White” dug on Sol 22. Once this is complete, each sample (containing approximately two to four teaspoonfuls) can then be sprinkled into the TEGA instrument so thorough analysis can take place. The bottom of Snow White appears to be rich in water ice, so the scraping action will have created small particles of regolith and small ice crystals. Having encountered the clumpiness of regolith before, the mission scientists are keen to push ahead with some flawless experiments.

Having overviewed the small samples, agreeing that the piles were “almost perfect samples of the interface of ice and soil,” Phoenix has been sent commands to scoop up each pile of dirt and sprinkle them into the TEGA. The instrument will then bake and analyse the soil to assess its volatile ingredients, like water. The melting point of the water ice can also be assessed. Once the data has been transmitted back to Earth scientists can begin to study the constituents of the sub-surface regolith, gaining a detailed look into just how hospitable the Red Planet could be.

Keep making those little sand castles Phoenix, we’re watching you very closely

Source: Phoenix (University of Arizona)

Ian O'Neill

[Follow me on Twitter (@astroengine)] [Check out my space blog: Astroengine.com] [Check out my radio show: Astroengine Live!] Hello! My name is Ian O'Neill and I've been writing for the Universe Today since December 2007. I am a solar physics doctor, but my space interests are wide-ranging. Since becoming a science writer I have been drawn to the more extreme astrophysics concepts (like black hole dynamics), high energy physics (getting excited about the LHC!) and general space colonization efforts. I am also heavily involved with the Mars Homestead project (run by the Mars Foundation), an international organization to advance our settlement concepts on Mars. I also run my own space physics blog: Astroengine.com, be sure to check it out!

Recent Posts

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance.…

10 hours ago

Next Generation Ion Engines Will Be Extremely Powerful

During the Space Race, scientists in both the United States and the Soviet Union investigated…

13 hours ago

Neutron Stars Could be Capturing Primordial Black Holes

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to…

14 hours ago

Japan’s Lunar Lander Survives its Third Lunar Night

Space travel and exploration was never going to be easy. Failures are sadly all too…

20 hours ago

Black Holes Can Halt Star Formation in Massive Galaxies

It’s difficult to actually visualise a universe that is changing. Things tend to happen at…

1 day ago

Mapping the Milky Way’s Magnetic Field in 3D

We are all very familiar with the concept of the Earth’s magnetic field. It turns…

2 days ago