Categories: AstronomyBlack Holes

Did Supermassive Black Holes Form Directly From Dark Matter?

Supermassive black holes are just a little bit too supermassive – astronomers have difficulty explaining how they got so big so quickly in the early universe. So maybe it’s time for a new idea: perhaps giant black holes formed directly from dark matter.

The biggest black holes in the universe are frighteningly big, topping out at over a hundred billion times more massive than the sun. To make things even more frightening, we see these kinds of monsters very early in the history of the universe, when our cosmos was only 800 million years old.

This presents a bit of a challenge, since the only way we know how to make black holes is for giant stars to die. Then, those small black holes (usually only a few times more massive than the sun) need to grow, either by feeding on surrounding material or merging with other black holes.

That’s fine, but for the supermassive black holes to appear so early, it means that these processes have to go unnervingly fast after the formation of the first stars – perhaps too fast.

But what the early universe lacked in stars it more than made up for in dark matter, the mysterious substance that makes up 85% of all the mass in the universe.

It’s possible, according to new research led by Carlos R. Argüelles at the Universidad Nacional de La Plata and ICRANet, that dark matter itself grew dense enough to collapse directly into black holes in the early universe, skipping the usual star-based story.

According to Argüelles, “This new formation scenario may offer a natural explanation for how supermassive black holes formed in the early Universe, without requiring prior star formation or needing to invoke seed black holes with unrealistic accretion rates.”

As a further consequence of this model, the smallest galaxies wouldn’t have giant black holes. Instead, they would just have ultra-dense cores of dark matter.

“Here we’ve proven for the first time that such core–halo dark matter distributions can indeed form in a cosmological framework, and remain stable for the lifetime of the Universe,” added Argüelles.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

TESS Finds its First Rogue Planet

Well over 5,000 planets have been found orbiting other star systems. One of the satellites…

13 hours ago

There are Four Ways to Build with Regolith on the Moon

Over the last few years I have been renovating my home. Building on Earth seems…

23 hours ago

Purple Bacteria — Not Green Plants — Might Be the Strongest Indication of Life

Astrobiologists continue to work towards determining which biosignatures might be best to look for when…

2 days ago

See the Southern Ring Nebula in 3D

Planetary nebula are some of nature's most stunning visual displays. The name is confusing since…

2 days ago

Hubble Has Accidentally Discovered Over a Thousand Asteroids

The venerable Hubble Space Telescope is like a gift that keeps on giving. Not only…

2 days ago

NASA Restores Communications with Voyager 1

The venerable Voyager 1 spacecraft is finally phoning home again. This is much to the…

2 days ago