Categories: AstronomyMars

Another Incredible Picture of Mars, This Time From a Region Just Outside Valles Marineris

The Mars Reconnaissance Orbiter (MRO) delivers once again! Using its advanced imaging instrument, the High Resolution Imaging Experiment (HiRISE) camera, the orbiter captured a breathtaking image (shown below) of the plains north of Juventae Chasma. This region constitutes the southwestern part of Valles Marineris, the gigantic canyon system that runs along the Martian equator.

The image was originally taken in July of 2007 by the HiRISE camera and showcases three distinct types of terrain. In the top half of the image, this includes plains with craters and sinuous ridge features. These features are of particular interest since they could be inverted stream channels, which are known to occur when a low-lying area becomes elevated.

HiRISE image showing the terrain in Juventae Chasma. Credit: NASA/JPL/UArizona

There are several reasons why a channel might stand out amid its surroundings, all of which come down to erosion. For instance, these channels may be formed from larger rocks than their surrounding environment, have been streambeds that became cemented by precipitating minerals, or have become filled with lava at some point.

All of these materials are more resistant to erosion, which means that they would remain and appear elevated after wind or water carried away finer-grained material around them. Other features include plains with exposed layers and layers on the wall of the Juventae Chasma canyon. Here too, we see evidence of erosion, which has exposed patches of light and dark layers measuring approximately 1 km (0.6 mi) across.

This is made more clear in another image snapped by HiRISE of the adjacent terrain (shown below), where these patches cover two-thirds of the left half of the image. Here, we see a series of concentric rings that expose deeper and deeper layers of material, the smallest of which is the deepest exposed layer.

While layered terrain is common in Martian canyons, it is not currently known what processes are behind their formation. However, it is believed that the layers in the plains are likely to be made of the same material as the layer in the canyons. Learning more about these features and how they formed will inevitably reveal more about the geological history of Mars.

Further Reading: University of Arizona/LPL

Matt Williams

Matt Williams is a space journalist and science communicator for Universe Today and Interesting Engineering. He's also a science fiction author, podcaster (Stories from Space), and Taekwon-Do instructor who lives on Vancouver Island with his wife and family.

Recent Posts

TESS Finds its First Rogue Planet

Well over 5,000 planets have been found orbiting other star systems. One of the satellites…

10 hours ago

There are Four Ways to Build with Regolith on the Moon

Over the last few years I have been renovating my home. Building on Earth seems…

20 hours ago

Purple Bacteria — Not Green Plants — Might Be the Strongest Indication of Life

Astrobiologists continue to work towards determining which biosignatures might be best to look for when…

2 days ago

See the Southern Ring Nebula in 3D

Planetary nebula are some of nature's most stunning visual displays. The name is confusing since…

2 days ago

Hubble Has Accidentally Discovered Over a Thousand Asteroids

The venerable Hubble Space Telescope is like a gift that keeps on giving. Not only…

2 days ago

NASA Restores Communications with Voyager 1

The venerable Voyager 1 spacecraft is finally phoning home again. This is much to the…

2 days ago