Europe’s Orbiter is Safely at Mars, but No Word from the Lander

Article written: 19 Oct , 2016
Updated: 20 Oct , 2016
by
Schiaparelli on Mars. Credit: ESA/ATG medialab

This artist’s view shows the European Space Agency’s Schiaparelli lander on Mars. It’s unclear whether the landing was successful. Signals were received during its descent but then suddenly cut off. Mission control is working on the data now and will have an update on the status of the probe tomorrow morning Oct. 20. Credit: ESA/ATG medialab

Good news and bad news.  First the good. After a seven-month and 300 million mile (483 million km) journey, the Trace Gas Orbiter (TGO) successfully achieved orbit around Mars today. A signal spike appeared out of the noise about 12:35 p.m. EDT to great applause and high-fives at ESA’s European Space Operations Center in Darmstadt, Germany.

Hugs in the control room when the signal from the Trace Gas Orbiter was received this morning, signaling that the spacecraft had achieved orbit around Mars. Credit: ESA Livestream

Joy in the control room when the signal from the Trace Gas Orbiter was received this morning, signaling that the spacecraft had achieved orbit around Mars. Credit: ESA Livestream

Two hours later, news of the lander arrived. Not so good but to be fair, it’s still too early to tell. Schiaparelli broadcast a signal during its descent to the Red Planet that was received here on Earth and by the orbiting Mars Express. All well and good. But then mid-transmission, the signal cut out.

Paolo Ferri, head of ESA’s mission operations department, called the news “not good signs” but promised that his team would be analyzing the data through the night to determine the status of the lander. Their findings will be shared around mid-morning Friday Central European Time (around 5 a.m. EDT).

Three days ago, Schiaparelli separated from the orbiter and began a three-day coast to Mars. It entered the atmosphere today at an altitude of 76 miles (122 km) and speed of 13,049 mph (21,000 km/hr), protected from the hellish heat of re-entry by an aerodynamic heat shield.

Simulated sequence of the 15 images that the descent camera Schiaparelli module should have taken during its descent to Mars this morning. In the simulated images shown here, the first was made from 3 km up. The camera took images every 1.5 seconds with the final image in this at ~1.5 km. Depending on Schiaparelli’s actual descent speed, the final image may have been snapped closer to the surface. The views were generated from images taken by NASA’s Mars Reconnaissance Orbiter of the center of Schiaparelli's landing ellipse, and represent the views expected at each altitude. Copyright spacecraft: ESA/ATG medialab; simulated views based on NASA MRO/CTX images (credit: NASA/JPL/MRO); landing ellipse background image: Mars Odyssey; simulation: ESA

Simulated sequence of the 15 images that the descent camera Schiaparelli module should have taken during its descent to Mars this morning. In the simulated images shown here, the first was made from 3 km up. The camera had planned to take images every 1.5 seconds with the final image in this at ~1.5 km. Depending on Schiaparelli’s actual descent speed, the final image may have been snapped closer to the surface. The views were generated from images taken by NASA’s Mars Reconnaissance Orbiter of the center of Schiaparelli’s landing ellipse, and represent the views expected at each altitude. Copyright spacecraft: ESA/ATG medialab; simulated views from NASA images (credit: NASA/JPL/MRO); landing ellipse background image: Mars Odyssey; simulation: ESA

If all went well, at 6.8 miles (11 km) altitude, it would have deployed its parachute and moments later, dropped the heat shield. At 0.7 miles (1.2 km) above the surface, the lander would have jettisoned the chute and rear protective cover and fired its nine retrorockets while plummeting to the surface at 155 mph (255 mph). 29 seconds later, the thrusters would have shut off with Schiaparelli dropping the remaining 6.5 feet (2 meters) to the ground. Total elapsed time: just under 6 minutes.

For now, have hope. Given that Schiaparelli was primarily a test of landing technologies for future Mars missions, whatever happened, everything we learn from this unexpected turn of events will be invaluable. You can continue to follow updates on ESA’s Livestream.

** Update Oct. 20: It appears that the thrusters on Schiaparelli may have cut out too soon, causing the lander to drop from a higher altitude. In addition, the ejection of the parachute and back heat shield may have happened earlier than expected.

This from ESA:

“The data have been partially analyzed and confirm that the entry and descent stages occurred as expected, with events diverging from what was expected after the ejection of the back heat shield and parachute. This ejection itself appears to have occurred earlier than expected, but analysis is not yet complete.

The thrusters were confirmed to have been briefly activated although it seems likely that they switched off sooner than expected, at an altitude that is still to be determined.”

, , , , ,



4 Responses

  1. Member
    spudulene says

    Another beagle, I fear

  2. BCstargazer says

    Thank you Bob 🙂
    This morning’s briefing took convulated ways to let us know that the TGO orbiter is in orbit around Mars as planned (the term “nominal” was used a few more times than needed) and the test bed Schiaparelli Entry & Descent module survived the heat shield atmosphere entry, the parachute deployed successfully, the heat shield was jettisoned, separated from the aeroshell/parachute assembly and that the braking thrusters fired for 3 or 4 seconds before contact was lost. A subsequent pass by the American MRO didn’t detect any signal.
    The next briefing is scheduled for a week from now so with a little luck, the HIRISE camera onboard MRO will be able to spot the little guy right where it’s supposed to be on Meridiani Planum, maybe a little banged up after a +/- 15 seconds free fall.
    Now, in a few months, after the upcoming Mars winter, there might be some merit into sending good old “Oppy” (MER-B) that way in order to learn more before the Europeans send their 2020 rover using the same method.

  3. Member
    Aqua4U says

    Am wondering if the Hi-Rise cameras on the MRO attempted to image the descent like it did for Curiosity?

    Schiaparelli.. PHONE HOME!

Leave a Reply