NASA is Building a Space Telescope to Observe Exoplanet Atmospheres

Artist's impression of the Pandora mission observing a transiting exoplanet. Credit: NASA’s Goddard Space Flight Center/Conceptual Image Lab

The exoplanet census continues to grow. Currently, 5,819 exoplanets have been confirmed in 4,346 star systems, while thousands more await confirmation. The vast majority of these planets were detected in the past twenty years, owing to missions like the Kepler Space Telescope, the Transiting Exoplanet Survey Satellite (TESS), the venerable Hubble, the Convection, Rotation and planetary Transits (CoRoT) mission, and more. Thousands more are expected as the James Webb Space Telescope continues its mission and is joined by the Nancy Grace Roman Space Telescope (RST).

In the meantime, astronomers will soon have another advanced observatory to help search for potentially habitable exoplanets. It’s called Pandora, a small satellite that was selected in 2021 as part of NASA’s call for Pioneer mission concepts. This observatory is designed to study planets detected by other missions by studying these planets’ atmospheres of exoplanets and the activity of their host stars with long-duration multiwavelength observations. The mission is one step closer to launch with the completion of the spacecraft bus, which provides the structure, power, and other systems.

Continue reading “NASA is Building a Space Telescope to Observe Exoplanet Atmospheres”

Astronomers are Watching a Newly Forming Super Star Cluster

An artist impression of young star formation in the Large Magellanic Cloud. Massive and low-mass stars appear within nebulous gas within which they are born. Credit: NSF/AUI/NSF NRAO/S.Dagnello

Six or seven billion years ago, most stars formed in super star clusters. That type of star formation has largely died out now. Astronomers know of two of these SSCs in the modern Milky Way and one in the Large Magellanic Cloud (LMC), and all three of them are millions of years old.

New JWST observations have found another SSC forming in the LMC, and it’s only 100,000 years old. What can astronomers learn from it?

Continue reading “Astronomers are Watching a Newly Forming Super Star Cluster”

Sticks and Stones: The Molecular Clouds in the Heart of the Milky Way

Astronomers have created 3D maps of two giant molecular clouds in the Milky Way's Central Molecular Zone (CMZ). What happens to them in such an extreme environment? Image Credit: Alboslani et al. 2025.

The Central Molecular Zone (CMZ) at the heart of the Milky Way holds a lot of gas. It contains about 60 million solar masses of molecular gas in complexes of giant molecular clouds (GMCs), structures where stars usually form. Because of the presence of Sag. A*, the Milky Way’s supermassive black hole (SMBH), the CMZ is an extreme environment. The gas in the CMZ is ten times more dense, turbulent, and heated than gas elsewhere in the galaxy.

How do star-forming GMCs behave in such an extreme environment?

Continue reading “Sticks and Stones: The Molecular Clouds in the Heart of the Milky Way”

Review: Dwarf Lab’s New Dwarf 3 Smartscope

DwarfLab’s new Dwarf 3 smartscope packs a powerful punch in a small unit.

Dwarf 3
Dwarf Lab’s Dwarf 3 smartscope.

In the past decade, amateur astronomy has witnessed nothing short of a revolution, as smartscopes have come to the fore. In half a century of skywatching, we’ve used just about every iteration of GoTo system available, starting with the now almost prehistoric ‘push-and-point’ AstroMaster units of the 90s. Strange to think, these were the hot new thing for telescopes in the 90s… though you still often had to perform a visual spiral search to actually find the target.

We recently had a chance to put Dwarf Lab’s new Dwarf 3 smartscope through its paces, and were impressed with what we’ve seen thus far. The small telescope even has personality: my wife said it actually looked like Johnny 5 from the 80s movie Short Circuit on start up (!)

Continue reading “Review: Dwarf Lab’s New Dwarf 3 Smartscope”

Webb and ALMA Team Up to Study Primeval Galaxy

The radio telescope array ALMA has pin-pointed the exact cosmic age of a distant JWST-identified galaxy, GHZ2/GLASS-z12, at 367 million years after the Big Bang. Image Credit: NASA/ESA/CSA/T. Treu, UCLA/NAOJ/T. Bakx, Nagoya U.

One of the most exciting developments in modern astronomy is how astronomers can now observe and study the earliest galaxies in the Universe. This is due to next-generation observatories like the James Webb Space Telescope (JWST), with its sophisticated suite of infrared instruments and spectrometers, and advances in interferometry – a technique that combines multiple sources of light to get a clearer picture of astronomical objects. Thanks to these observations, astronomers can learn more about how the earliest galaxies in the Universe evolved to become what we see today.

Using Webb and the Atacama Large Millimeter/submillimeter Array (ALMA), an international team led by researchers from the National Astronomical Observatory of Japan (NAOJ) successfully detected atomic transitions coming from galaxy GHZ2 (aka. GLASS-z12), located 13.4 billion light-years away. Their study not only set a new record for the farthest detection of these elements This is the first time such emissions have been detected in galaxies more than 13 billion light-years away and offers the first direct insights into the properties of the earliest galaxies in the Universe.

Continue reading “Webb and ALMA Team Up to Study Primeval Galaxy”

Recent Observations Challenge our Understanding of Giant Black Holes

Artist's impression of a white dwarf embedded in the disk of a giant black hole. Credit: NASA/Sonoma State University, Aurore Simonnet

Black holes are among the most mysterious and powerful objects in the Universe. These behemoths form when sufficiently massive stars reach the end of their life cycle and experience gravitational collapse, shedding their outer layers in a supernova. Their existence was illustrated by the work of German astronomer Karl Schwarzschild and Indian-American physicist Subrahmanyan Chandrasekhar as a consequence of Einstein’s Theory of General Relativity. By the 1970s, astronomers confirmed that supermassive black holes (SMBHs) reside at the center of massive galaxies and play a vital role in their evolution.

However, only in recent years were the first images of black holes acquired by the Event Horizon Telescope (EHT). These and other observations have revealed things about black holes that have challenged preconceived notions. In a recent study led by a team from MIT, astronomers observed oscillations that suggested an SMBH in a neighboring galaxy was consuming a white dwarf. But instead of pulling it apart, as astronomical models predict, their observations suggest the white dwarf was slowing down as it descended into the black hole – something astronomers have never seen before!

Continue reading “Recent Observations Challenge our Understanding of Giant Black Holes”