China Plans to Retrieve Mars Samples by 2031

The launch of the Tianwen-1 mission, Wenchang City, south China's Hainan Province, July 23, 2020. Credit: CFP

China’s growing presence in space has been undeniable since the turn of the century. Between sending the first “taikonaut” to space in 2003 (Yang Liwei), launching the first Chinese robotic mission to the Moon (Chang’e-1) in 2007, and the deployment of their Tiangong space station between 2021-2022, China has emerged as a major power in space. Accordingly, they have bold plans for the future, like the proposed expansion of their Tiangong space station and the creation of the International Lunar Research Station (ILRS) by 2035.

In their desire to become a space power that can rival NASA, China also has its sights on Mars. In addition to crewed missions that will culminate in a “permanent base,” they intend to conduct a sample-return mission in the near future. This will be performed by the Tianwen-3 mission, which is currently scheduled to launch in 2028 and return samples to Earth by 2031. In a recent article, the Tianwen-3 science team outlined their exploration strategy, including the methods used to retrieve the samples, the target locations, and how they’ll be analyzed for biosignatures that could indicate the presence of past life.

Continue reading “China Plans to Retrieve Mars Samples by 2031”

Here’s What We Know About Earth’s Temporary Mini-Moon

2024-PT5

For a little over a month now, the Earth has been joined by a new ‘mini-moon.’ The object is an asteroid that has been temporarily accompanying Earth on its journey around the Sun. By 25th November it will have departed but before then, astronomers across the world have been turning their telescopes to study it. A new paper of 2024 PT5 reveals its basaltic nature – similar to volcanic rocks on Earth – with a composition that makes it similar to lunar material. There have been many close encounters to Earth allowing many of its secrets to be unveiled.

Continue reading “Here’s What We Know About Earth’s Temporary Mini-Moon”

How Scientists Repurposed a Camera on ESA’s Mars Express Mission

Mars
A full-disk view of Mars, courtesy of VMC. Credit: ESA

A camera aboard the Mars Express orbiter finds a new lease on life.

Sometimes, limitations can lead to innovation. A recent paper highlights how researchers are utilizing the VMC (Visual Monitoring Camera) aboard the European Space Agency’s (ESA) venerable Mars Express orbiter.

The work is a collaboration between the European Space Agency (ESA) and the University of the Basque Country.

Continue reading “How Scientists Repurposed a Camera on ESA’s Mars Express Mission”

Check Out This Sneak Peek of the Euclid mission’s Cosmic Atlas

This mosaic made by ESA’s Euclid space telescopes constitutes about 1% of the wide survey that Euclid will capture during six years. Credit: ESA/Euclid/Euclid Consortium/NASA/CEA Paris-Saclay/J.-C. Cuillandre, E. Bertin, G. Anselmi

On July 1st, 2023 (Canada Day!), the ESA’s Euclid mission lifted off from Cape Canaveral, Florida, atop a SpaceX Falcon 9 rocket. As part of the ESA’s Cosmic Vision Programme, the purpose of this medium-class mission was to observe the “Dark Universe.” This will consist of observing billions of galaxies up to 10 billion light-years away to create the most extensive 3D map of the Universe ever created. This map will allow astronomers and cosmologists to trace the evolution of the cosmos, helping to resolve the mysteries of Dark Matter and Dark Energy.

The first images captured by Euclid were released by the ESA in November 2023 and May 2024, which provided a glimpse at their quality. On October 15th, 2024, the first piece of Euclid‘s great map of the Universe was revealed at the International Astronautical Congress (IAC) in Milan. This 208-gigapixel mosaic contains 260 observations made between March 25th and April 8th, 2024, and provides detailed imagery of millions of stars and galaxies. This mosaic accounts for just 1% of the wide survey that Euclid will cover over its six-year mission and provides a sneak peek at what the final map will look like.

Continue reading “Check Out This Sneak Peek of the Euclid mission’s Cosmic Atlas”

Jets From Supermassive Black Holes Create New Stars Along Their Trajectory

Artist's concept looking down into the core of the giant elliptical galaxy M87. Credit: NASA/ESA,/J. Olmsted (STScI)

Since the 1970s, astronomers have observed that supermassive black holes (SMBHs) reside at the centers of most massive galaxies. In some cases, these black holes accelerate gas and dust from their poles, forming relativistic jets that can extend for thousands of light-years. Using the NASA/ESA Hubble Space Telescope, a team of astronomers observed the jet emanating from the center of M87, the supermassive galaxy located 53.5 million light-years away. To their surprise, the team observed nova erupting along the jet’s trajectory, twice as many as they observed in M87 itself.

Continue reading “Jets From Supermassive Black Holes Create New Stars Along Their Trajectory”

Metal Part 3D Printed in Space for the First Time

The ESA has created the first 3D-printed metal component in space. Credit: ESA/NASA

Additive manufacturing, also known as 3D printing, has had a profound impact on the way we do business. There is scarcely any industry that has not been affected by the adoption of this technology, and that includes spaceflight. Companies like SpaceX, Rocket Lab, Aerojet Rocketdyne, and Relativity Space have all turned to 3D printing to manufacture engines, components, and entire rockets. NASA has also 3D-printed an aluminum thrust chamber for a rocket engine and an aluminum rocket nozzle, while the ESA fashioned a 3D-printed steel floor prototype for a future Lunar Habitat.

Similarly, the ESA and NASA have been experimenting with 3D printing in space, known as in-space manufacturing (ISM). Recently, the ESA achieved a major milestone when their Metal 3D Printer aboard the International Space Station (ISS) produced the first metal part ever created in space. This technology is poised to revolutionize operations in Low-Earth Orbit (LEO) by ensuring that replacement parts can be manufactured in situ rather than relying on resupply missions. This process will reduce operational costs and enable long-duration missions to the Moon, Mars, and beyond!

Continue reading “Metal Part 3D Printed in Space for the First Time”

Mars has an Amazing Variety of Clouds

Lee waves: Lee waves are a special type of cloud created by the wind encountering obstacles and build up on the ‘leeward‘ or downwind side. The geometries of the lee waves depend on the shape of the obstacles. Credit: ESA/DLR/FU Berlin.

Mars has always held a special place in our hearts, likely from hints over the decades of perhaps finding signs of life, albeit fossilised and primitive. It’s been the subject of study from telescopes and space missions alike, most notably ESA’s Mars Express which has been observing the red planet for 20 years. Over the two decades of observation it has studied an amazing variety of atmospheric phenomenon which have now been catalogued in a new ‘Cloud Atlas.’ Many will be familiar to sky watchers on Earth but some are very different. 

Continue reading “Mars has an Amazing Variety of Clouds”

How the ESA’s Rosalind Franklin Rover Will Drill for Samples on Mars

This screenshot from an animation shows the Rosalind Franklin rover's drill about to pierce the Martian surface. The rover can drill two meters deep and collect samples. Image Credit: ESA

Russia’s attack on Ukraine has delayed its launch, but the ESA’s Rosalind Franklin rover is heading toward completion. It was originally scheduled to launch in 2018, but technical delays prevented it. Now, after dropping Russia from the project because of their invasion, the ESA says it won’t launch before 2028.

But when it does launch and then land on Mars, it will do something no other rover has done: drill down two meters into Mars and collect samples.

Continue reading “How the ESA’s Rosalind Franklin Rover Will Drill for Samples on Mars”