Gaia Spots an Enormous Ghost Galaxy Right Next Door that’s Being Dismantled by the Milky Way

From left to right: Large Magellanic Cloud, the Milky Way, and Antlia 2, our next door neighbor and so-called ghost galaxy. Credit: V. Belokurov based on the images by Marcus and Gail Davies and Robert Gendler

Astronomers combing through data from the ESA’s Gaia spacecraft have discovered what they’re calling a ghost galaxy. The galaxy, named Antlia 2 (Ant 2) is an extremely low-density dwarf galaxy that was formed in the early days of the universe. And it is being stripped of its mass by the tidal forces of the Milky Way.
Continue reading “Gaia Spots an Enormous Ghost Galaxy Right Next Door that’s Being Dismantled by the Milky Way”

There’s a Funny Cloud on Mars, Perched Right at the Arsia Mons Volcano. Don’t Get Too Excited, Though, it’s not an Eruption

A funny cloud on Mars. The ESA' Mars Express orbiter captured this image of an elongated cloud forming near the Arsia Mons volcano at the Martian equator. Image: ESA/Mars Express

The ESA’s Mars Express orbiter has spotted a funny cloud on Mars, right near the Arsia Mons Volcano. At first glance it looks like a plume coming out of the volcano. But it’s formation is not related to any internal activity in this long-dead volcano. It’s a cloud of water ice known as an orographic or lee cloud.

The cloud isn’t linked to any volcanic activity, but its formation is associated with the form and altitude of Arsia Mons. Arsia Mons is a dormant volcano, with scientists putting its last eruptive activity at 10 mya. This isn’t the first time this type of cloud has been seen hovering around Arsia Mons.

Continue reading “There’s a Funny Cloud on Mars, Perched Right at the Arsia Mons Volcano. Don’t Get Too Excited, Though, it’s not an Eruption”

Gaia Sees Stars Out in Deep Space, Flying Between Galaxies

In December of 2013, the European Space Agency (ESA) launched the Gaia mission. Since that time, this space observatory has been busy observing over 1 billion astronomical objects in our galaxy and beyond – including stars, planets, comets, asteroids, quasars, etc. – all for the sake of creating the largest and most precise 3D space catalog ever made.

The ESA has also issued two data releases since then, both of which have led to some groundbreaking discoveries. The latest comes from the Leiden Observatory, where a team of astronomers used Gaia data to track what they thought were high-velocity stars being kicked out of the Milky Way, but which actually appeared to be moving into our galaxy.

Continue reading “Gaia Sees Stars Out in Deep Space, Flying Between Galaxies”

This is the Exact Spot that ESA’s SMART-1 Crashed Into the Moon in 2006

In 2003, the European Space Agency (ESA) launched the Small Missions for Advanced Research in Technology-1 (SMART-1) lunar orbiter. After taking 13 months to reach the Moon using a Solar Electric Propulsion (SEP) system, the orbiter then spent the next three years studying the lunar surface. Then, on September 3rd, 2006, the mission came to an end as the spacecraft was deliberately crashed onto the lunar surface.

While the bright flash that this created was captured by observers using the Canada-France-Hawaii Telescope in Hawaii, no other spacecraft were in orbit at the time to witness it. As a result, it has been impossible for over a decade to determine precisely where SMART-1 went down. But thanks to images captured last year by NASA’s Lunar Reconnaissance Orbiter (LRO), the final resting place of SMART-1 is now known.

Continue reading “This is the Exact Spot that ESA’s SMART-1 Crashed Into the Moon in 2006”

This is a 3D map of 400,000 Hot Massive Stars Located Within 10,000 Light-Years From the Sun, Thanks to Gaia!

In December of 2013, the European Space Agency (ESA) launched the Gaia mission, a space observatory designed to measure the positions of movements of celestial bodies. Over the course of its five-year mission, this observatory has been studying a total of 1 billion objects – including distant stars, planets, comets, asteroids, quasars, etc. – for the sake of creating the largest and most precise 3D space catalog ever made.

Continue reading “This is a 3D map of 400,000 Hot Massive Stars Located Within 10,000 Light-Years From the Sun, Thanks to Gaia!”

Building Bricks on the Moon From Lunar Dust

In the coming decades, many space agencies hope to conduct crewed missions to the Moon and even establish outposts there. In fact, between NASA, the European Space Agency (ESA), Roscosmos, and the Indian and Chinese space agencies, there are no shortages of plans to construct lunar bases and settlements. These will not only establish a human presence on the Moon, but facilitate missions to Mars and deeper into space.

For instance, the ESA is planning on building an “international lunar village” on the Moon by the 2030s. As the spiritual successor to the International Space Station (ISS), this village would also allow for scientific research in a lunar environment. Currently, European researchers are planning how to go about constructing this village, which includes conducting experiments with lunar dust simulants to create bricks.

To put it simply, the entire surface of the Moon is covered in dust (aka. regolith) that is composed of fine particles of rough silicate. This dust was formed over the course of billions of years by constant meteorite impacts which pounded the silicate mantle into fine particles. It has remained in a rough and fine state due to the fact that the lunar surface experiences no weathering or erosion (due to the lack of an atmosphere and liquid water).

Artist’s concept for a multi-dome lunar base, which would be constructed by 3D-printing robots using lunar dust (regolith). Credits: ESA/Foster + Partners

Because it is so plentiful, reaching depths of 4-5 meters (13-16.5 feet) in some places – and up to 15 meters (49 feet) in the older highland areas – regolith is considered by many space agencies to be the building material of choice for lunar settlements. As Aidan Cowley, the ESA’s science advisor and an expert when it comes to lunar soil, explained in a recent ESA press release:

“Moon bricks will be made of dust. You can create solid blocks out of it to build roads and launch pads, or habitats that protect your astronauts from the harsh lunar environment.”

In addition to taking advantage of a seemingly inexhaustible local resource, the ESA’s plans to use lunar regolith to create this base and related infrastructure demonstrates their commitment to in-situ resource utilization. Basically, bases on the Moon, Mars, and other locations in the Solar System will need to be as self-sufficient as possible to reduce reliance on Earth for regular shipments of supplies – which would both expensive and resource-exhaustive.

To test how lunar regolith would fare as a building material, ESA scientists have been using Moon dust simulants harvested right here on Earth. As Aiden explained, regolith on both Earth and the Moon are the product of volcanism and are basically basaltic material made up of silicates. “The Moon and Earth share a common geological history,” he said, “and it is not difficult to find material similar to that found on the Moon in the remnants of lava flows.”

ESA’s 3D-printed lunar base concept, based on the design produced by the architectural design and engineering firm Foster+Partners. Credit: ESA/Foster + Partners

The simulant were harvested from the region around Cologne, Germany, that were volcanically active about 45 million years ago. Using volcanic powder from these ancient lava flows, which was determined to be a good match for lunar dust, researchers from the European Astronaut Center (EAC) began using the powder (which they’ve named EAC-1) to fashioning prototypes of the bricks that would be used to created the lunar village.

Spaceship EAC, an ESA initiative designed to tackle the challenges of crewed spaceflight, is also working with EAC-1 to develop the technologies and concepts that will be needed to create a lunar outpost and for future missions to the Moon. One of their projects centers on how to use the oxygen in lunar dust (which accounts for 40% of it) to help astronauts have extended stays on the Moon.

But before the ESA can sign off on lunar dust as a building material, a number of tests still need to be conducted. These include recreating the behavior of lunar dust in a radiation environment to simulate their electrostatic behavior. For decades, scientists have known that lunar dust is electrically-charged because of the way it is constantly bombarded by solar and cosmic radiation.

This is what causes it to lift off the surface and cling to anything it touches (which the Apollo 11 astronauts noticed upon returning to the Lunar Module). As Erin Transfield – a member of ESA’s lunar dust topical team – indicated, scientists still do not fully understand lunar dust’s electrostatic nature, which could pose a problem when it comes to using it as a building material.

What’s more, the radiation-environment experiments have not produced any conclusive results yet. As a biologist who dreams of being the first woman on the Moon, Transfield indicated that more research is necessary using actual lunar dust. “This gives us one more reason to go back to the Moon,” she said. “We need pristine samples from the surface exposed to the radiation environment.”

Beyond establishing a human presence on the Moon and allowing for deep-space missions, the construction of the ESA’s proposed lunar village would also offer opportunities to leverage new technologies and forge partnerships between the public and private sector. For instance, the ESA has collaborated with the architectural design firm Foster + Partners to come up with the design for their lunar village, and other private companies have been recruited to help investigate other aspects of building it.

At present, the ESA plans to build their international lunar village in southern polar region, where plentiful water ice has been discovered. To investigate this, the ESA will be sending their Package for Resource Observation and in-Situ Prospecting for Exploration, Commercial exploitation and Transportation (PROSPECT) mission to the Moon in 2020, which will be travelling as part of the Russian Luna-27 mission.

This mission, a joint effort between the ESA and Roscosmos, will involve a Russian-built lander setting down in the Moon’s South Pole-Aitken Basin, where the PROSPECT probe will deploy and drill into the surface to retrieve samples of ice. Going forward, the ESA’s long-term plans also call for a series of missions to the Moon beginning in the 2020s that would involve robot workers paving the way for human explorers to land later.

In the coming decades, the intentions of the world’s leading space agencies are clear – not only are we going back to the Moon, but we intend to stay there! To that end, considerable resources are being dedicated towards researching and developing the necessary technologies and concepts needed to make this happen. By the 2030s, we might just see astronauts (and even private citizens) coming and going from the Moon with regular frequency.

And be sure to check out this video about the EAC’s efforts to study lunar regolith, courtesy of the ESA:

Further Reading: ESA

Look at This Adorable Pen-Sized Booster, Perfect for Tiny Satellites

When it comes to space exploration, the motto “keep it simple” isn’t always followed! For the most part, satellites, spacecraft, telescopes, and the many other technologies that allow humans to study and explore the Universe are the result of highly-technical and complex feats of engineering. But sometimes, it is the simplest ideas that offer the most innovative solutions.

This is especially true when it comes to the today’s space agencies, who are concerned with cutting costs and increasing accessibility to space. A good example is the Fenix propulsion system, a proposal created by Italian tech company D-Orbit. As part of the last year’s Space Exploration Masters, this pen-sized booster will allow CubeSats to maneuver and accomplish more in space.

The Space Exploration Masters, which the European Space Agency (ESA) initiated in 2017, seeks to encourage space-based innovation and provide opportunities for commercial development. As such, this annual competition has become central to the implementation of the ESA Space Exploration strategy. For their application last year, D-Orbit was jointly awarded the the ESA and Space Application Services prize.

The Fenix propulsion system, as it would be fitted to a CubeSat. Credit: D-Orbit

The thruster prototype itself measures only 10 cm long and 2 cm wide (~4 by 0.8 inches) and contain solid propellant that is triggered by a simple electrical ignition system. The boosters are designed to be placed at each corner of a 10 x 10 x 10 cm CubeSat, or can be doubled up for added thrust. Thanks to their lightweight and compact size, they do not take up much instrument space or add significantly to a CubeSat’s weight.

Currently, CubeSats are deployed directly into space, deorbit at the end of their missions, and have no means to change their orbits. But with this simple, chemical-propellant thruster, CubeSats could function for longer periods and would be able to take on more complicated missions. For instance, if they can maneuver in orbit, they will be able to study the Moon and asteroids from different angles.

In addition, boosters will allow CubeSats to deorbit themselves once they are finished their missions, thus reducing the threat of space debris. According to the latest report from the Space Debris Office at the European Space Operations Center (ESOC), an estimated 19,894 bits of space junk were circling our planet by the end of 2017, with a combined mass of at least 8135 metric tons (8967 US tons). This problem is only expected to get worse.

In fact, it is estimated that the small satellite market will grow by $5.3 billion in the next decade (according to Space Works and Eurostat) and many private companies are looking to provide regular launch services to accommodate that growth. As such, a propulsion system that not only presents opportunities to do more with CubeSats, but in a way that will not add to problem of space debris, will be highly sought-after.

Artist’s impression of a series of CubeSats orbiting Earth. Credit: ESA/Medialab

In addition to the ESA and Space Application Services prize, D-Orbit won a four-month ticket to test their prototype on the newly-installed ICE Cubes facility, which is located in the Columbus module aboard the International Space Station. This facility is the first European commercial research center to operate aboard the ISS, and the D-Orbit team will use to test the booster’s safe ignition mechanism inside an ICE cube experiment.

This experiment, which will not involve firing the actual propulsion system, will help ensure that the booster can operate safe and effectively in space. Sensors and cameras will record the sparks, triggered by an electrical impulse, while the team relies on the ICE Cubes facility’s dedicated control center to provide them with remote viewing opportunities from the ground.

The Fenix boosters are set to launch for the ISS by the end of next year and, if successful, D-Orbit will likely secure permission to test their propulsion system in space. And if all goes well, future generations of CubeSats – which have already made Low Earth Orbit (LEO) accessible to private companies and research institutes – will be capable of performing far more tasks in orbit.

For this year’s Space Exploration Masters, the ESA is partnering with the United Nations World Health Organization (WHO) to address health and food. For the main challenge, participants will be tasked with coming up with applications that promote nutritious food and food security, both on- and 0ff-planet. Among other challenges, this year’s SEM will also be looking for ideas that make missions more sustainable and new ways to use future spacecraft.

For more information on this year’s Space Exploration Masters, check out the ESA website page.

Further Reading: ESA

Underground Liquid Water Found on Mars!

According to evidence gathered by multiple robotic orbiters, rovers, and landers over the course of several decades, scientists understand that Mars was once a warmer, watery place. But between 4.2 and 3.7 billion years ago, this began to change. As Mars magnetic field disappeared, the atmosphere slowly began to be stripped away by solar wind, leaving the surface the cold and dry and making it impossible for water to exist in liquid form.

While much of the planet’s water is now concentrated in the polar ice caps, scientists have speculated some of Mars’ past water could still be located underground. Thanks to a new study by a team of Italian scientists, it has now been confirmed that liquid water still exists beneath Mars’ southern polar region. This discovery has put an end to a fifteen-year mystery and bolstered the potential for future missions to Mars.

The study, titled “Radar evidence of subglacial liquid water on Mars“, recently appeared in the journal Science. The study was led by Roberto Orosei of the National Institute of Astrophysics (INAF) in Italy, and included members from the Italian Space Agency (ASI), the ESA Center for Earth Observation (ESRIN), and multiple observatories, research institutions and universities.

Radar detection of water under the south pole of Mars. Credit: ESA/NASA/JPL/ASI/Univ. Rome

So far, robotic missions have revealed considerable evidence of past water on Mars. These include dried-out river valleys and gigantic outflow channels discovered by orbiters, and evidence of mineral-rich soils that can only form in the presence of liquid water by rovers and landers. Early evidence from the ESA’s Mars Express probe has also showed that water-ice exists at the planet’s poles and is buried in the layers interspersed with dust.

However, scientists have long suspected that liquid water could exist beneath the polar ice caps, much in the same way that liquid water is believed to underlie glaciers here on Earth. In addition, the presence of salts on Mars could further reduce the melting point of subsurface water and keep it in a liquid state, despite the sub-zero temperatures present on both the surface and underground.

For many years, data from the Mars Express’ Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument – which has been used to study the southern polar region – has remained inconclusive. Like all ground-penetrating radar, this instrument relies on radar pulses to map surface topography and determine the properties of the materials that lie beneath the surface.

Luckily, after considerable analysis, the study team was able to develop new techniques that allowed them to collect enough high-resolution data to confirm the presence of liquid water beneath the southern ice cap. As Andrea Cicchetti, the MARSIS operations manager and a co-author on the new paper, indicated:

“We’d seen hints of interesting subsurface features for years but we couldn’t reproduce the result from orbit to orbit, because the sampling rates and resolution of our data was previously too low. We had to come up with a new operating mode to bypass some onboard processing and trigger a higher sampling rate and thus improve the resolution of the footprint of our dataset: now we see things that simply were not possible before.”

Water detection under the south pole of Mars. Credit: Context map: NASA/Viking; THEMIS background: NASA/JPL-Caltech/Arizona State University; MARSIS data: ESA/NASA/JPL/ASI/Univ. Rome; R. Orosei et al 2018

What they found was that the southern polar region is made of many layers of ice and dust down to a depth of about 1.5 km over a 200 km-wide area, and featured an anomalous area measuring 20-km wide. As Roberto Orosei, the principal investigator of the MARSIS experiment and lead author of the paper, explained in a recent ESA press release:

“This subsurface anomaly on Mars has radar properties matching water or water-rich sediments. This is just one small study area; it is an exciting prospect to think there could be more of these underground pockets of water elsewhere, yet to be discovered.”

After analyzing the properties of the reflected radar signals and taking into account the composition of the layered deposits and expected temperature profiles below the surface, the scientists concluded that the 20-km wide feature is an interface between the ice and a stable body of liquid water. For MARSIS to be able to detect such a patch of water, it would need to be at least several tens of centimeters thick.

These findings also raise the possibility of there being life on Mars, both now and in the past. This is based on research that found microbial life in Lake Vostok, which is located some 4 km (2.5 mi) below the ice in Antarctica. If life can thrive in salty, subglacial environments on Earth, then it is possible that they could survive on Mars as well. Determining if this is the case will be the purpose of existing and future missions to Mars.

The MARSIS instrument on the Mars Express is a ground penetrating radar sounder used to look for subsurface water and ice. Credit: ESA

As Dmitri Titov, one of the Mars Express project scientist, explained:

“The long duration of Mars Express, and the exhausting effort made by the radar team to overcome many analytical challenges, enabled this much-awaited result, demonstrating that the mission and its payload still have a great science potential. This thrilling discovery is a highlight for planetary science and will contribute to our understanding of the evolution of Mars, the history of water on our neighbour planet and its habitability.”

The Mars Express launched on June 2nd, 2003, and will celebrate 15 years in orbit of Mars by December 25th this year. In the coming years, it will be joined by the ESA’s ExoMars 2020 mission, NASA’s Mars 2020 Rover, and a number of other scientific experiments. These missions will pave the way for a potential crewed mission, which NASA is planning to mount by the 2030s.

If there is indeed liquid water to be found on Mars, it will go a long way towards facilitating future research and even an ongoing human presence on the surface. And if there is still life on Mars, the careful research of its ecosystems will help address the all-important question of how and when life emerged in the Solar System.

Further Reading: ESA, Science

Cassini’s “Grande Finale” Earns an Emmy Nomination!

An artist's illustration of the Cassini probe's Grand Finale. Image: NASA/JPL/CalTech

In 1997, the NASA/ESA Cassini-Huygens mission launched from Earth and began its long journey towards the Saturn system. In 2004, the Cassini orbiter arrived around Saturn and would spend the next thirteen years studying the gas giant, its rings, and its system of Moons. On September 15th, 2017, the mission ended when the probe entered Saturn’s upper atmosphere and burned up.

This was known as Cassini’s “Grand Finale“, which began with the probe plunging into the unexplored region that lies between Saturn’s atmosphere and its rings and culminated with live coverage of it entering the atmosphere. In honor of the mission and NASA’s outstanding coverage of its final months, NASA was recently nominated for an Emmy Award by The Academy of Television Arts & Sciences.

The award is in the category of Outstanding Original Interactive Program, which recognizes the JPL’s multi-month digital campaign that celebrated the mission’s science and engineering accomplishments – which included news, web, education, television and social media efforts. It is also a nod to the agency’s success in communicating why the spacecraft concluded its mission in the skies of Saturn.

Essentially, the spacecraft was intentionally destroyed in Saturn’s atmosphere to prevent the possibility of it contaminating any of Saturn’s moons. Throughout the thirteen years it spent studying the Saturn system, Cassini found compelling evidence for the possible existence of life on Titan and in Enceladus’ interior ocean. In addition, scientists have speculated that there may be interior oceans within Rhea and Dione.

In this respect, Cassini ended its mission the same way the Galileo probe did in 2003. After spending 8 years studying Jupiter and its system the moons, the probe crashed into the gas giant’s upper atmosphere in order to prevent any possible contamination of Europa or Ganymede, which are also thought to have an interior oceans that could support life.

The “Grand Finale” campaign began on April 26th, 2017, and continued until the craft entered Saturn’s atmosphere on Sept. 15th, 2017, with the spacecraft sending back science to the very last second. The campaign utilized several different forms of media, was interactive, and was very comprehensive, providing regular updates and vital information about the mission.

As NASA indicated on their Cassini website:

“The multi-faceted campaign included regular updates on Twitter, Facebook, Snapchat, Instagram and the Cassini mission website; multiple live social, web and TV broadcasts during which reporter and public questions were answered; a dramatic short film to communicate the mission’s story and preview its endgame; multiple 360-degree videos, including NASA’s first 360-degree livestream of a mission event from inside JPL mission control; an interactive press kit; a steady drumbeat of articles to keep fans updated with news and features about the people behind the mission; state-standards aligned educational materials; a celebration of art by amateur space enthusiasts; and software to provide real-time tracking of the spacecraft, down to its final transmission to Earth.”

The short film, titled “For Your Consideration: The NASA Cassini Grand Finale“, showcases the missions many accomplishments, pays tribute to all those who made it happen and who helped inform the public and communicate the importance of the mission.

The Primetime Emmys will be awarded be on September 17th in Los Angeles. The Creative Arts Emmys, which includes interactive awards, will be presented during a separate ceremony on Saturday, Sept. 15th, at the Microsoft Theatre in Los Angeles. Other contenders include Back to the Moon, a Google Spotlight Stories App; Blade Runner 2049: Memory Lab, Coco VR, and Spiderman Homecoming, three Oculus VR experiences.

And be sure to check out the videos, FYC: NASA Cassini Grand Finale, below:

Further Reading: NASA

Oumuamua Accelerated Out of the Solar System Like a Comet

On October 19th, 2017, the Panoramic Survey Telescope and Rapid Response System-1 (Pan-STARRS-1) telescope in Hawaii announced the first-ever detection of an interstellar asteroid – I/2017 U1 (aka. ‘Oumuamua). Originally though to be a comet, follow-up observations conducted by the European Southern Observatory (ESO) and others confirmed that ‘Oumuamua was actually a rocky body that had originated outside of our Solar System.

Since that time, multiple studies have been conducted to learn more about this interstellar visitor, and some missions have even been proposed to go and study it up close. However, the most recent study of ‘Oumuamua, conducted by a team of international scientists, has determined that based on the way it left our Solar System, ‘Oumuamua is likely to be a comet after all.

The study recently appeared in the journal Nature under the title “Non-gravitational acceleration in the trajectory of  1I/2017 U1 (Oumuamua)“. The study team was led by Marco Micheli of the ESA SSA-NEO Coordination Center and the INAF Osservatorio Astronomico di Roma and included members from the University of Hawaii’s Institute for Astronomy, NASA’s Jet Propulsion Laboratory, the European Southern Observatory (ESO), the Southwest Research Institute (SwRI), the Planetary Science Institute, and The Johns Hopkins University Applied Physics Laboratory (JHUAPL).

As noted, when it was first discovered – roughly a month after it made its closest approach to the Sun – scientists believed ‘Oumuamua was an interstellar comet. However, follow-up observations showed no evidence of gaseous emissions or a dusty environment around the body (i.e. a comet tail), thus leading to it being classified as a rocky interstellar asteroid.

This was followed by a team of international researchers conducting a study that showed how ‘Oumuamua was more icy that previously thought. Using the ESO’s Very Large Telescope in Chile and the William Herschel Telescope in La Palma, the team was able to obtain spectra from sunlight reflected off of ‘Oumuamua within 48 hours of the discovery. This revealed vital information about the composition of the object, and pointed towards it being icy rather than rocky.

The presence of an outer-layer of carbon rich material also explained why it did not experience outgassing as it neared the Sun. Following these initial observations, Marco Micheli and his team continued to conduct high-precision measurements of ‘Oumuamua and its position using ground-based facilities and the NASA/ESA Hubble Space Telescope.

By January, Hubble was able to snap some final images before the object became too faint to observe as it sped away from the Sun on its way to leaving the Solar System. To their surprise, they noted that the object was increasing its velocity deviating from the trajectory it would be following if only the gravity of the Sun and the planets were influencing its course.

Oumuamua as it appeared using the William Herschel Telescope on the night of October 29. Queen’s University Belfast/William Herschel Telescope

In short, they discovered that ‘Oumuamua was not slowing down as expected, and as of June 1st, 2018, was traveling at a speed of roughly 114,000 km/h (70,800 mph). The most likely explanation, according to the team, is that ‘Oumuamua is venting material from its surface due to solar heating (aka. outgassing). The release of this material would give ‘Oumuamua the steady push it needed to achieve this velocity.

As Davide Farnocchia, a researcher from NASA’s Jet Propulsion Laboratory and a co-author on the paper, explained in a recent ESA press release:

“We tested many possible alternatives and the most plausible one is that ’Oumuamua must be a comet, and that gasses emanating from its surface were causing the tiny variations in its trajectory.”

Moreover, the release of gas pressure would also explain how ‘Oumuamua is veering off course since outgassing has been known to have the effect of perturbing the comet’s path. Naturally, there are still some mysteries that still need to be solved about this body. For one, the team still has not detected any dusty material or chemical signatures that typically characterize a comet.

As such, the team concluded that ‘Oumuamua must have been releasing only a very small amount of dust, or perhaps was releasing more pure gas without much dust. In either case, ‘Oumuamua is estimated to be a very small object, measuring about 400 meters (1312 ft) long. In the end, the hypothesized outgassing of ‘Oumuamua remains a mystery, much like its origin.

Artist’s impression of the interstellar object, ‘Oumuamua, experiencing outgassing as it leaves our Solar System. Credit: ESA/Hubble, NASA, ESO, M. Kornmesser

In fact, the team originally performed the Hubble observations on ‘Oumuamua in the hopes of determining its exact path, which they would then use to trace the object back to its parent star system. These new results mean this will be more challenging than originally thought. As Olivier Hainaut, a researcher from the European Southern Observatory and a co-author on the study, explained:

“It was extremely surprising that `Oumuamua first appeared as an asteroid, given that we expect interstellar comets should be far more abundant, so we have at least solved that particular puzzle. It is still a tiny and weird object, but our results certainly lean towards it being a comet and not an asteroid after all.”

Detlef Koschny, another co-author on the study, is responsible for Near-Earth Object activities under ESA’s Space Situational Awareness program. As he explained, the study of ‘Oumuamua has provided astronomers with the opportunity to improve asteroid detection methods, which could play a vital role in the study of Near-Earth Asteroids and determining if they post a risk.

“Interstellar visitors like these are scientifically fascinating, but extremely rare,” he said. “Near-Earth objects originating from within our Solar System are much more common and because these could pose an impact risk, we are working to improve our ability to scan the sky every night with telescopes such as our Optical Ground Station that contributed to this fascinating discovery.”

Since ‘Oumuamua’s arrival, scientists have determined that there may be thousands of interstellar asteroids currently in our Solar System, the largest of which would be tens of km in radius. Similarly, another study was conducted that revealed the presence of an interstellar asteroid (2015 BZ509) that – unlike ‘Oumuamua, which was an interloper to out system – was captured by Jupiter’s gravity and has since remained in a stable orbit.

This latest study is also timely given the fact that June 30th is global “Asteroid Day”, an annual event designed to raise awareness about asteroids and what can be done to protect Earth from a possible impact. In honor of this event, the ESA co-hosted a live webcast with the European Southern Observatory to discuss the latest science news and research on asteroids. To watch a replay of the webcast, go to the ESA’s Asteroid Day webpage.

Further Reading: ESA, ESO, TED, Nature