Mercury-Bound BepiColombo is About to Start Using the Most Powerful Ion Engines Ever Sent to Space

An artist's impression of the BepiColombo spacecraft as it approaches Mercury at the end of its 7 year journey. Image: spacecraft: ESA/ATG medialab; Mercury: NASA/JPL

A handful of spacecraft have used ion engines to reach their destinations, but none have been as powerful as the engines on the BepiColombo spacecraft. BepiColombo is a joint mission between the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA.) It was launched on October 20, 2018, and has gone through weeks of in-flight commissioning. On Sunday it turned on its powerful ion thrusters for the first time.

“We put our trust in the thrusters and they have not let us down.” – Günther Hasinger, ESA Director of Science.

BepiColombo is a three-part spacecraft. It has two orbiters, the Mercury Planet Orbiter (MPO) built by the ESA, and the Mercury Magnetospheric Orbiter (MMO) built by JAXA. The third part is the Mercury Transfer Module (MTM), built by ESA. The MTM is the propulsion part of the spacecraft and contains the spacecraft’s four ion engines.

Continue reading “Mercury-Bound BepiColombo is About to Start Using the Most Powerful Ion Engines Ever Sent to Space”

There’s a Funny Cloud on Mars, Perched Right at the Arsia Mons Volcano. Don’t Get Too Excited, Though, it’s not an Eruption

A funny cloud on Mars. The ESA' Mars Express orbiter captured this image of an elongated cloud forming near the Arsia Mons volcano at the Martian equator. Image: ESA/Mars Express

The ESA’s Mars Express orbiter has spotted a funny cloud on Mars, right near the Arsia Mons Volcano. At first glance it looks like a plume coming out of the volcano. But it’s formation is not related to any internal activity in this long-dead volcano. It’s a cloud of water ice known as an orographic or lee cloud.

The cloud isn’t linked to any volcanic activity, but its formation is associated with the form and altitude of Arsia Mons. Arsia Mons is a dormant volcano, with scientists putting its last eruptive activity at 10 mya. This isn’t the first time this type of cloud has been seen hovering around Arsia Mons.

Continue reading “There’s a Funny Cloud on Mars, Perched Right at the Arsia Mons Volcano. Don’t Get Too Excited, Though, it’s not an Eruption”

New Image Shows the Rugged Landscape of Comet 67P

In March of 2004, the European Space Agency’s Rosetta spacecraft blasted off from French Guiana aboard an Ariane 5 rocket. After ten years, by November of 2014, the spacecraft rendezvoused with its target – Comet 67P/Churyumov-Gerasimenko (67P/C-G). Over the more than two years that followed, the spacecraft remained in orbit of this comet, gathering information on its surface, interior, and gas and dust environment.

And on September 30th, 2016, Rosetta came closer than ever to the surface of 67P/C-G and concluded its mission with a controlled impact onto the surface. Since that time, scientists have still been processing all the data the spacecraft collected during its mission. This included some awe-inspiring photographs of the comet’s surface that were obtained shortly after the spacecraft made its rendezvous with 67P/C-G.

Continue reading “New Image Shows the Rugged Landscape of Comet 67P”

Gaia Sees Stars Out in Deep Space, Flying Between Galaxies

In December of 2013, the European Space Agency (ESA) launched the Gaia mission. Since that time, this space observatory has been busy observing over 1 billion astronomical objects in our galaxy and beyond – including stars, planets, comets, asteroids, quasars, etc. – all for the sake of creating the largest and most precise 3D space catalog ever made.

The ESA has also issued two data releases since then, both of which have led to some groundbreaking discoveries. The latest comes from the Leiden Observatory, where a team of astronomers used Gaia data to track what they thought were high-velocity stars being kicked out of the Milky Way, but which actually appeared to be moving into our galaxy.

Continue reading “Gaia Sees Stars Out in Deep Space, Flying Between Galaxies”

The Milky Way is Still Rippling from a Galactic Collision Millions of Years Ago

The ESA's Gaia mission has discovered evidence of a primordial galactic collision between our Milky Way galaxy and the nearby Sagittarius dwarf galaxy. Image: ESA/Gaia

Between 300 million and 900 million years ago, our Milky Way galaxy nearly collided with the Sagittarius dwarf galaxy. Data from the ESA’s Gaia mission shows the ongoing effect of this event, with stars moving like ripples on the surface of a pond. The galactic collision is part of an ongoing cannibalization of the dwarf galaxy by the much-larger Milky Way.

Continue reading “The Milky Way is Still Rippling from a Galactic Collision Millions of Years Ago”

This is the Exact Spot that ESA’s SMART-1 Crashed Into the Moon in 2006

In 2003, the European Space Agency (ESA) launched the Small Missions for Advanced Research in Technology-1 (SMART-1) lunar orbiter. After taking 13 months to reach the Moon using a Solar Electric Propulsion (SEP) system, the orbiter then spent the next three years studying the lunar surface. Then, on September 3rd, 2006, the mission came to an end as the spacecraft was deliberately crashed onto the lunar surface.

While the bright flash that this created was captured by observers using the Canada-France-Hawaii Telescope in Hawaii, no other spacecraft were in orbit at the time to witness it. As a result, it has been impossible for over a decade to determine precisely where SMART-1 went down. But thanks to images captured last year by NASA’s Lunar Reconnaissance Orbiter (LRO), the final resting place of SMART-1 is now known.

Continue reading “This is the Exact Spot that ESA’s SMART-1 Crashed Into the Moon in 2006”

This is a 3D map of 400,000 Hot Massive Stars Located Within 10,000 Light-Years From the Sun, Thanks to Gaia!

In December of 2013, the European Space Agency (ESA) launched the Gaia mission, a space observatory designed to measure the positions of movements of celestial bodies. Over the course of its five-year mission, this observatory has been studying a total of 1 billion objects – including distant stars, planets, comets, asteroids, quasars, etc. – for the sake of creating the largest and most precise 3D space catalog ever made.

Continue reading “This is a 3D map of 400,000 Hot Massive Stars Located Within 10,000 Light-Years From the Sun, Thanks to Gaia!”

Building Bricks on the Moon From Lunar Dust

In the coming decades, many space agencies hope to conduct crewed missions to the Moon and even establish outposts there. In fact, between NASA, the European Space Agency (ESA), Roscosmos, and the Indian and Chinese space agencies, there are no shortages of plans to construct lunar bases and settlements. These will not only establish a human presence on the Moon, but facilitate missions to Mars and deeper into space.

For instance, the ESA is planning on building an “international lunar village” on the Moon by the 2030s. As the spiritual successor to the International Space Station (ISS), this village would also allow for scientific research in a lunar environment. Currently, European researchers are planning how to go about constructing this village, which includes conducting experiments with lunar dust simulants to create bricks.

To put it simply, the entire surface of the Moon is covered in dust (aka. regolith) that is composed of fine particles of rough silicate. This dust was formed over the course of billions of years by constant meteorite impacts which pounded the silicate mantle into fine particles. It has remained in a rough and fine state due to the fact that the lunar surface experiences no weathering or erosion (due to the lack of an atmosphere and liquid water).

Artist’s concept for a multi-dome lunar base, which would be constructed by 3D-printing robots using lunar dust (regolith). Credits: ESA/Foster + Partners

Because it is so plentiful, reaching depths of 4-5 meters (13-16.5 feet) in some places – and up to 15 meters (49 feet) in the older highland areas – regolith is considered by many space agencies to be the building material of choice for lunar settlements. As Aidan Cowley, the ESA’s science advisor and an expert when it comes to lunar soil, explained in a recent ESA press release:

“Moon bricks will be made of dust. You can create solid blocks out of it to build roads and launch pads, or habitats that protect your astronauts from the harsh lunar environment.”

In addition to taking advantage of a seemingly inexhaustible local resource, the ESA’s plans to use lunar regolith to create this base and related infrastructure demonstrates their commitment to in-situ resource utilization. Basically, bases on the Moon, Mars, and other locations in the Solar System will need to be as self-sufficient as possible to reduce reliance on Earth for regular shipments of supplies – which would both expensive and resource-exhaustive.

To test how lunar regolith would fare as a building material, ESA scientists have been using Moon dust simulants harvested right here on Earth. As Aiden explained, regolith on both Earth and the Moon are the product of volcanism and are basically basaltic material made up of silicates. “The Moon and Earth share a common geological history,” he said, “and it is not difficult to find material similar to that found on the Moon in the remnants of lava flows.”

ESA’s 3D-printed lunar base concept, based on the design produced by the architectural design and engineering firm Foster+Partners. Credit: ESA/Foster + Partners

The simulant were harvested from the region around Cologne, Germany, that were volcanically active about 45 million years ago. Using volcanic powder from these ancient lava flows, which was determined to be a good match for lunar dust, researchers from the European Astronaut Center (EAC) began using the powder (which they’ve named EAC-1) to fashioning prototypes of the bricks that would be used to created the lunar village.

Spaceship EAC, an ESA initiative designed to tackle the challenges of crewed spaceflight, is also working with EAC-1 to develop the technologies and concepts that will be needed to create a lunar outpost and for future missions to the Moon. One of their projects centers on how to use the oxygen in lunar dust (which accounts for 40% of it) to help astronauts have extended stays on the Moon.

But before the ESA can sign off on lunar dust as a building material, a number of tests still need to be conducted. These include recreating the behavior of lunar dust in a radiation environment to simulate their electrostatic behavior. For decades, scientists have known that lunar dust is electrically-charged because of the way it is constantly bombarded by solar and cosmic radiation.

This is what causes it to lift off the surface and cling to anything it touches (which the Apollo 11 astronauts noticed upon returning to the Lunar Module). As Erin Transfield – a member of ESA’s lunar dust topical team – indicated, scientists still do not fully understand lunar dust’s electrostatic nature, which could pose a problem when it comes to using it as a building material.

What’s more, the radiation-environment experiments have not produced any conclusive results yet. As a biologist who dreams of being the first woman on the Moon, Transfield indicated that more research is necessary using actual lunar dust. “This gives us one more reason to go back to the Moon,” she said. “We need pristine samples from the surface exposed to the radiation environment.”

Beyond establishing a human presence on the Moon and allowing for deep-space missions, the construction of the ESA’s proposed lunar village would also offer opportunities to leverage new technologies and forge partnerships between the public and private sector. For instance, the ESA has collaborated with the architectural design firm Foster + Partners to come up with the design for their lunar village, and other private companies have been recruited to help investigate other aspects of building it.

At present, the ESA plans to build their international lunar village in southern polar region, where plentiful water ice has been discovered. To investigate this, the ESA will be sending their Package for Resource Observation and in-Situ Prospecting for Exploration, Commercial exploitation and Transportation (PROSPECT) mission to the Moon in 2020, which will be travelling as part of the Russian Luna-27 mission.

This mission, a joint effort between the ESA and Roscosmos, will involve a Russian-built lander setting down in the Moon’s South Pole-Aitken Basin, where the PROSPECT probe will deploy and drill into the surface to retrieve samples of ice. Going forward, the ESA’s long-term plans also call for a series of missions to the Moon beginning in the 2020s that would involve robot workers paving the way for human explorers to land later.

In the coming decades, the intentions of the world’s leading space agencies are clear – not only are we going back to the Moon, but we intend to stay there! To that end, considerable resources are being dedicated towards researching and developing the necessary technologies and concepts needed to make this happen. By the 2030s, we might just see astronauts (and even private citizens) coming and going from the Moon with regular frequency.

And be sure to check out this video about the EAC’s efforts to study lunar regolith, courtesy of the ESA:

Further Reading: ESA