Drag Sail Success! This Satellite Won't Turn Into Space Junk

The deployment of the Drag Augmentation Deorbiting System (ADEO) was captured by a camera onboard the ION satellite carrier. Credit: ESA.

The European Space Agency successfully tested a solar-sail-type device to speed up the deorbit time for a used cubesat carrier in Earth orbit.  The so-called breaking sail, the Drag Augmentation Deorbiting System (ADEO) was deployed from an ION satellite carrier in late December 2022. Engineers estimate the sail will reduce the time it takes for the carrier to reenter Earth’s atmosphere from 4-5 years to approximately 15 months.

The sail is one of many ideas and efforts to reduce space junk in Earth orbit.   

“We want to establish a zero debris policy, which means if you bring a spacecraft into orbit you have to remove it,” said Josef Aschbacher, ESA Director General.

Continue reading “Drag Sail Success! This Satellite Won't Turn Into Space Junk”

Europe Will be Building the Transfer Arm for the Mars Sample Return Mission

The concept for a Mars lander with a Sample Transfer Arm to retrieve and bring samples of Mars dirt and rocks to Earth. Credit: ESA.

Now that the Perseverance rover has dropped off ten regolith and rock sample tubes for a future sample return mission to retrieve, the plans for such a mission are coming together. The mission is a joint venture between NASA and the European Space Agency, and ESA has agreed to build a 2.5-meter-long robotic arm to pick up tubes and then transfer them to a rocket for the first-ever Mars samples to be brought to Earth.

Continue reading “Europe Will be Building the Transfer Arm for the Mars Sample Return Mission”

The New Ariane 6 Heavy Lift Rocket is Finally on the Launch Pad, But Won’t Liftoff Until Late 2023

The Ariane 6 rocket fully stacked at Korous Spaceport. Credit: ESA/Manuel Pedoussaut

A prototype of ESA’s new heavy lift rocket is now fully assembled and sitting on the launchpad at Europe’s Spaceport in French Guiana. But according to officials at a briefing last week, the space agency and the rocket’s prime contractor, ArianeGroup, have decided to delay the first flight of the Ariane 6 to the fourth quarter of 2023 after several issues were brought to the fore in an external review.

Continue reading “The New Ariane 6 Heavy Lift Rocket is Finally on the Launch Pad, But Won’t Liftoff Until Late 2023”

The First Telescope Images of DART's Impact are Starting to Arrive

Artist's impression of the DART mission impacting the moonlet Dimorphos. Credit: ESA

On September 26th, at 23:14 UTC (07:14 PM EST; 04:14 PM PST), NASA’s Double Asteroid Redirect Test (DART) spacecraft successfully struck the 160-meter (525 ft) moonlet Dimorphos that orbits the larger Didymos asteroid. The event was live-streamed all around the world and showed footage from DART’s Didymos Reconnaissance and Asteroid Camera for Optical navigation (DRACO) as it rapidly approached Dimorphos. In the last few seconds, DART was close enough that individual boulders could be seen on the moonlet’s surface.

About 38 seconds after impact, the time it took the signal to reach Earth, the live stream ended, signaling that DART had successfully impacted Dimorphos and was destroyed in the process. Meanwhile, teams of astronomers stretching from the Indian Ocean to the Arabian Peninsula watched the impact with their telescopes. One, in particular – the Les Makes Observatory on the island of Le Reunion in the Indian Ocean – captured multiple images of the impact. These were used to create a real-time video and show the asteroid brightening as it was pushed away, followed by material ejected from the surface.

Continue reading “The First Telescope Images of DART's Impact are Starting to Arrive”

Robots Might Jump Around to Explore the Moon

LEAP (Legged Exploration of the Aristarchus Plateau) is a mission concept study, funded by ESA, to explore challenging lunar terrains using ANYmal, a four-legged robot developed at ETH Zürich and its spin-off ANYbotics. Credit: ETH Zürich/Robotics Systems Labs (RSL)

How great are wheels, really? Wheels need axles. Suspension. Power of some kind. And roads, or at least swaths of relatively flat and stable terrain. Then you need to maintain all of it. Because of their cost many civilizations across human history, who knew all about wheels and axles, didn’t bother using them for transportation. Another way to look at it – much of human technology mimics nature. Of the simple machines, levers, inclined planes, wedges, and even screws are observed in nature. Why not the wheel?

Continue reading “Robots Might Jump Around to Explore the Moon”

Bouncy Castles on the Moon. Inflated Habitats Might be the Best Way to Get Started on a Lunar Base

In this decade, multiple space agencies will send astronauts to the Moon for the first time since the Apollo Era. In addition to NASA, the ESA, China, and Roscosmos, commercial space entities like SpaceX and Blue Origin are hoping to conduct regular missions in support of human exploration while also mounting their own private ventures. In time, this activity could result in the creation of permanent infrastructure, a regular human presence, and the emergence of a lunar economy. Nevertheless, there are many questions about how humans will live in lunar conditions and what type of facilities will be needed.

To this end, the Austrian-based inflatable structures specialist Pneumocell recently conducted a study to determine if lightweight prefabricated structures would be a suitable option. According to this study, a series of donut-shaped inflatable structures could be transported to the Moon at a low cost, where they would then be inflated. The habitats would be partially buried beneath the lunar regolith and surrounded by solar mirrors that could direct sunlight into their greenhouses. This “Inflatable Moon Habitat” offers a cost-effective and highly self-sufficient means of establishing a foothold on the Moon.

Continue reading “Bouncy Castles on the Moon. Inflated Habitats Might be the Best Way to Get Started on a Lunar Base”

Satellites are Tracking Rivers of Garbage Flowing Across the Oceans

garbage patches in Earth's oceans
A a computational model of ocean currents called ECCO-2 that shows how garbage can be distributed across Earth's oceans. Courtesy NASA's Scientific Visualization Studio

There’s an ocean of human-made garbage floating through Earth’s seas. From plastic straws to beverage bottles and food wrappers, the ocean waters are this planet’s fastest-growing junkyard. Some of the plastic gets ground into little beads called microplastics, and ends up in the food chain, with humans at the top. For that reason, and many others, the European Space Agency is tracking ocean-bound plastics through the auspices of the MARLISAT project. It’s one of 25 efforts created to identify and trace marine litter as it moves through the world’s waterways. The ultimate goal is to help countries reduce ocean litter, particularly plastics.

Continue reading “Satellites are Tracking Rivers of Garbage Flowing Across the Oceans”

ESA’s EnVision Mission Doesn’t Have a lot of Fuel, so it’s Going to Aerobrake in the Atmosphere of Venus

Artist impression of ESA's EnVision mission. Credit:ESA/VR2Planets/Damia Bouic

Venus has almost been “the forgotten planet,” with only one space mission going there in the past 30 years. But the recent resurgence of interest in Earth’s closest neighbor has NASA and ESA committing to three new missions to Venus, all due to launch by the early 2030s.

ESA’s EnVision mission Venus is slated to take high-resolution optical, spectral and radar images of the planet’s surface. But to do so, the van-sized spacecraft will need to perform a special maneuver called aerobraking to gradually slow down and lower its orbit through the planet’s hot, thick atmosphere. Aerobraking uses atmospheric drag to slow down a spacecraft and EnVision will make thousands of passages through Venus’ atmosphere for about two years.

Continue reading “ESA’s EnVision Mission Doesn’t Have a lot of Fuel, so it’s Going to Aerobrake in the Atmosphere of Venus”

Gaia's Massive Third Data Release is out!

It’s here! The third and largest data release (DR3) from the ESA’s Gaia Observatory has officially been made public. As promised, the DR3 contains new and improved details for almost two billion stars in our galaxy, including the chemical compositions, temperatures, colors, masses, ages, and the velocities at which stars move. The release coincided with a virtual press event hosted by the Gaia Data Processing and Analysis Consortium (DPAC) on June 13th, which featured ESA officials and guest speakers who addressed the significance of the new data.

Continue reading “Gaia's Massive Third Data Release is out!”